MORRISON Natalie

From: SMITH Stephen (Mining Inspector)
Sent: Wednesday, 8 April 2020 1:24 PM

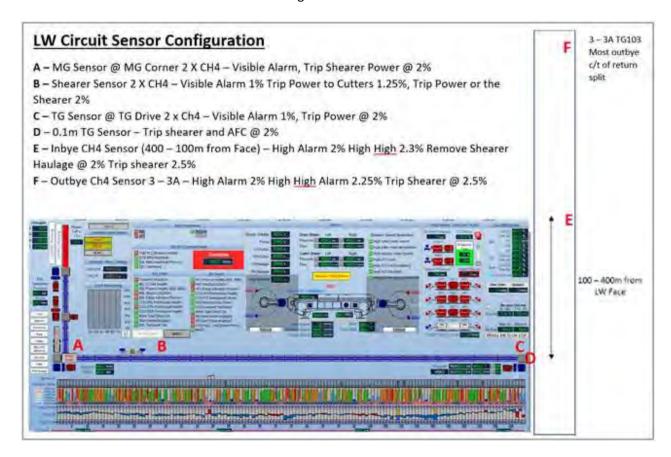
To: DOBSON Shaun Subject: FW: CH4 monitors

Attachments: GRO-10671-RA-LW104 Secondary Extraction.docx

From: Niehaus, Wouter

Sent: Wednesday, 8 April 2020 1:00 PM

To: SMITH Stephen (Mining Inspector); BRENNAN Keith


Cc: Grosvenor Mine Record; Griffiths, Trent

Subject: RE: CH4 monitors

Good afternoon Stephen,

As requested please find attached RA.

Grosvenor included the installation of the additional CH4 sensor as required by Regs sec 243A (2) in our Secondary Extraction Risk Assessment. Sensor D on the diagram below.

In addition to the sensor required in Regs sec 243A(2) we have an additional sensor located within 400m of the LW face to control the gas concentration in the entire LW return roadway at below 2.5% (Sensor E)

I understand that we have had a number of CH4 exceedances during the past weeks as our LW goaf is still forming and we have not passed square on the block as yet. All our controls have been adequate and we have stopped LW

cutting operations well in time to ensure that the shearer had not been cutting or been closer than 60m to the TG corner on all occasions.

Please let me know if you have any questions or require any additional information regarding this matter.

Kind Regards Wouter Niehaus Underground Mine Manager Grosvenor

COAL
GROSVENOR
464 Goonyella Road, Moranbah, Qld, 4744, Australia
www.angloamerican.com.au
A member of the Anglo American plc group

From: SMITH Stephen (Mining Inspector) < Stephen.Smith2@dnrme.qld.gov.au>

Sent: Tuesday, 7 April 2020 10:53 AM

To: Niehaus, Wouter <

Subject: CH4 monitors

This message originated outside Anglo American

Hi Wouter

Would you forward me a copy of the risk assessment(s) conducted regarding the installation of the CH4 monitor in the shield canopy of the last tailgate shield and the CH4 monitor in the tailgate roadway within 400 metres of the faceline please?

Regards

Stephen Smith

Regional Inspector of Coal Mines - North Region

Mines Inspectorate | Resources Safety and Health Department of Natural Resources, Mines and Energy

P: 07 4999 8510 M: 0436 658 225

E: Stephen.Smith2@dnrme.qld.gov.au

A: Level 5, 44 Nelson Street, Mackay QLD 4740 | PO Box 1801

Mackay QLD 4740

W: www.dnrme.qld.gov.au

Weekend Duty officer number: 1300 882 096

The information in this email together with any attachments is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. There is no waiver of any confidentiality/privilege by your inadvertent receipt of this material.

Any form of review, disclosure, modification, distribution and/or publication of this email message is prohibited, unless as a necessary part of Departmental business.

If you have received this message in error, you are asked to inform the sender as quickly as possible and delete this message and any copies of this message from your computer and/or your computer system network.

		CONTEXT		
DATE WRAC WAS CONDUCTED:	04/12/19	WRAC FACILITATOR:	Ravindu Goonawardene	

SCOPE In this section enter the topic, item, process, plant in relation to its physical location, boundary, limits or operations at GCM.

To identify hazards & potential unwanted events in order to develop adequate control measures to reduce the risk associated with conducting second workings of the LW104 panel at the Grosvenor Coal Mine and ensure compliance to the Qld Coal Mining Safety & Health Regulation 2017.

This scope and the above objectives have been reviewed and approved by: Trent Griffiths and Rob Nowell

In line with Section 317 of the Coal Mining Safety and Health Regulation 2017, this risk assessment shall address all aspects of planning for safe working in regard to the secondary workings of the LW104 panel. These will include, but are not limited to:

- Any surface features, artificial structures and water reserves that may create a hazard if disturbed by the workings;
- b) All adjacent workings, including abandoned workings and those of other mines;
- The known geology affecting the intended workings;
- d) The anticipated gas make;
- e) Structural stability;
- f) The proposed method and sequence of coal extraction, including seam and extracted thickness;
- g) Proposed methods of:
 - Strata control and support,
 - ii. Ventilation, and
 - iii. Controlling spontaneous combustion;
- h) Support methods necessary to control the goaf edges of active panel; and
- i) The suitability of the plant and its control systems used for the workings

This risk assessment addresses the high-level risks associated from CH4381 to CH0 in LW104. A separate risk assessment will be conducted for LW ramp up, Bolt-up and Salvage to manage the specific risks associated with these relevant tasks which is different from routine longwall operating activities.

ssue: 05/03/2020 Page 1 of 111
•

CONTEXT

2. BACKGROUND & DESCRIPTION OF ACTIVITY/EVENT/HAZARD/ISSUE BEING ASSESSED

The purpose of this document is to:

- Document the risk assessment conducted to assess all risks associated with the secondary extraction of LW104 in accordance with Sec. 317 of the CMSHR 2017.
- Document the process used to identify foreseen hazards and analyse the risk associated with the hazards.
- Develop a prescribed way that will achieve an acceptable level of risk when conducting the designated task.

Background information

Longwall 104 is the fourth longwall block to be extracted at Grosvenor Mine. Similar conditions are expected to those that have been encountered in LW101, LW102 and LW103. Second Workings for LW104 are expected to commence Q1 2020 with an expected completion date of June 2021.

3. ASSUMPTIONS

Assumption relating to this risk assessment and task include;

- · Introduction to site has been completed for all equipment
- PPE is available and used by coal mine workers
- · Personnel are trained, competent and authorised to undertake any works that they complete
- · Personnel use personal risk management tools (SLAM/JSEA) as required and appropriately
- ERZ Controllers undertake routine inspections
- · Standard electrical installations requirements implemented
- · Equipment is only used for its intended purpose
- Equipment pre-start inspections are conducted before use

3/04/2020	Print: 8/04	1	Version:	Original Issue Date:	GRO-10671-RA-LW104 Secondary
of 111	Page 2 of 1	05/03/2020	Date of Issue:	05/03/2020	Extraction
			DEMENSAGE SERVICE	9782010007	PRINTED COPIES OF THIS DOC

CONTEXT
4. WORK ENVIRONMENT
The Anglo American Metallurgical Coal Grosvenor Coal Mine (Mining Lease Application 70378) is located directly north of the township of Moranbah in Central
Queensland, approximately 150 km south-west of Mackay.
The physical environment within the scope of the risk assessment is all the activities to be undertaken by coal mine workers in the LW104 second workings processes
5. RISK ASSESSMENT METHODOLOGY:
This Risk Assessment was conducted in accordance with QLD Coal Mining Legislation, Recognised Standard 02 – Control of Risk Management Practices & AS/NZS ISO
31000:2009 – Risk Management. Initial Risk is calculated in the context of proposed controls for site. Residual Risk is calculated in the context of proposed and additional
actions required.
6. COMPLIANCE CHECKLIST ☑ all items to be checked for relevance & included as part of the RA process
□ DME Hazard Database https://www.business.qld.gov.au/industries/mining-energy-water/resources/safety-health/mining/hazards/
□ CMSHA Act 1999 https://www.legislation.qld.gov.au/view/pdf/2017-03-30/act-1999-039
□ CMHRS Regulation 2017 https://www.legislation.qld.gov.au/view/pdf/asmade/sl-2017-0165
□ WHS Regulation 2011 https://www.legislation.qld.gov.au/view/pdf/inforce/current/sl-2011-0240
□ QLD Codes of Practice https://www.worksafe.qld.gov.au/laws-and-compliance/codes-of-practice
□ Anglo Fatal Risk Standards https://www.angloamerican.com/~/media/Files/A/Anglo-American-PLC-V2/documents/supplier/fatal_risk_standards.pdf
□ Anglo Safety Golden Rules

1	GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
	Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 3 of 111
1	PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTRO	LLED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

- □ QLD Mines Recognised Standards https://www.business.qld.qov.au/industries/mininq-energy-water/resources/safety-health/mining/leqislation-standards
- □ QLD Mines Guidelines https://www.business.qld.gov.au/industries/mining-energy-water/resources/safety-health/mining/legislation-standards/recognised-standards
- ☐ Relevant GCM PHMP, HMP, SOP or SWI's (search on Anglo Docs)
- 7. REFERENCE MATERIALS add any additional references as required to this generic list
- 215056_Moranbah_North_Grosvenor_Flood_Modelling_v01 Flood modelling for pre and post subsidence
- Anglo Fatal Risk Standards
- · Anglo Geotechnical OMS Standards.
- Anglo Safety Golden Rules
- Arrow Energy & Anglo American interaction Management Plan (JIMP)
- Borehole database (Acquire Database)
- DME Hazard Database
- GRO 10 -PHMP Spontaneous Combustion
- GRO 10208-RA LW103 Secondary Extraction
- GRO 10221-SOP LW103 Second Workings
- GRO 10563 -TARP-LW Return Methane General Body Contaminants
- GRO -14 PHMP Gas management (Monitoring)
- GRO 1431-TARP-Cyclones
- GRO 1432-TARP Lightning
- GRO 1434-TARP-Flooding
- GRO 1436-TARP-High Winds
- GRO 15 PHMP Ventilation
- GRO 16 -PHMP-Methane Drainage

Version:		Print: 8/04/2020
Date of Issue:	05/03/2020	Page 4 of 111
	,	

- GRO-750-TARP-General Body Contaminant
- GRO-10563-TARP-LW Return Methane General Body Contaminants
- GRO 160 -TARP-Heat Management
- GRO 1629 -HMP- Introduction of Underground Equipment
- GRO 200 -PRO Change Management
- GRO 204 -PRO- Training Competence Scheme
- GRO 215 -PRO Personnel On Boarding
- GRO 241 -SOP- Control of Energy
- GRO 2561 -PLAN- Soil and Vegetation Management Plan
- GRO 27 -HMP-Location of Electrical Equipment Underground
- GRO 300 HMP Disturbance, Penetration, Excavation and Rehabilitation
- GRO 314 -SWI Managing Extreme Weather Events
- GRO 3223 -SWI- Operational No Go Zones
- GRO 3231 -PRO Grosvenor Commissioning Execution Plan
- GRO 3303 -HMP Control of Frictional Ignition
- GRO 3313 -RA Mine Earthing Lightning
- . GRO 3385 -PRO Permit to Mine
- GRO 3446 -RA Arrow Energy & Anglo American interaction -Data collection from arrow
- GRO 3595 -HMP Intersecting Boreholes
- GRO 3602 CHK Borehole Intersection Notice
- GRO 3985 -PRO Grosvenor Coal Mine Arrow Energy well handover procedure
- GRO 4164 -PLAN-Water Management Plan
- GRO 42 -HMP Mine Inspection system
- GRO 4200 -PMT Grosvenor Coal Mine Environmental Authority (EA)

05/03/2020	Page 5 of 111
	05/03/2020 ALID ONLY ON THE

- GRO 4201 -PLAN- Grosvenor Plan of operation
- GRO 48 -HMP-Management of Heat
- GRO 4801 -STD-Longwall Standard Area Management System
- GRO 5314 -PRO Equipment Hazard Zones
- GRO 5372 -STD Longwall Operational Standards
- GRO 5454 STD –Longwall periodic weighting and cavity management standard
- GRO 5609 TARP –Longwall Creep and Face Alignment
- GRO 5833 -TARP- Strata Control Longwall Face Operations
- GRO 5861 -STD Mine Planning Standard
- GRO 64 SOP-Using Portable Electrical Equipment Underground
- GRO 7481 -PLAN-Subsidence Management Plan
- GRO 750 -TARP General Body Contaminants
- GRO 77 -SOP Underground Workplace Inspections system
- GRO 7731 -EVP-Subsidence Rehabilitation Procedure
- GRO 7732 -PRO Cultural Heritage Planning
- GRO 7774 -TARP- Strata Control Longwall Gate end roadways adjacent roadways
- GRO 7820 -EVP-Environmental monitoring Procedure
- GRO 830 -EVP- Cultural heritage management
- . GRO 8427 -SOP Intersecting underground gas drainage boreholes
- GRO 8480-PMT Permit to Drill (Surface)
- · GRO 8515 -TARP Longwall frictional ignition
- . GRO 8804 -PMT Permit to Drill (surface boreholes)
- GRO 9 PHMP- Inrush
- Grosvenor Mine Borehole Earthing & Lightning Protection Study

ginal Issue Date:	Version:	1	Print: 8/04/2020
03/2020	Date of Issue:	05/03/2020	Page 6 of 111
		20020 227 N C 2 YW C 2	2.000 x 2.7 N = 2.7 W = 2

- LW 103 Hazard plan DRG-15155
- LW 104 Hazard plan DRG-15175
- QLD Coal Mining Safety & Health Act 1999
- QLD Coal Mining Safety & Health Regulation 2017
- QLD Mines Guidelines
- QLD Mines Recognised Standards
- Recognised Standard 02 Control of risk management practices
- Subsidence modelling and monitoring MSEC1010 Subsidence Model Review Q4 2018
- WHS Regulation 2011

		04/2020
e of Issue: 05/	03/2020 Page 7 of	F111
		e of Issue: 05/03/2020 Page 7 of

TEAM SHEET

Name	Company	Role & Qualifications	Date	Industry Experience (yrs)	Consensus (Y/N)	Signature
Ravinda Goonowardene	Angl:	Tech Services Super Facilitater 5,52,53,62	4/12/17		7	
Wathley a	Anglo	LW Actoriation	9/12/19		4	
GADHUM WEST	ANGLO	LAS COMPLIANCE COORD.	4/12/19	19.	+	
bshua lamaster	Anglo	LW/ Co-andinofor / ETE Controller	4.12.19	18	Y	
Ben Thomson	Anylo	(u Co-ordinator (Mech)	4/12/18	7	У	
Matt Clesson	OKR	Lw Co-ordinator (Electrical) 51,52,53, G2, Electrode.	4/12/19	8	Y	
Beun Mulcohy	Anglo	Seam gas Swain bedat	4/12/19	≥ 12	Y	
HAYBEN HEARNE	ANGLO	VENTLATION & CAS SOLOR 51, 12, 53, 62 YO	4.12.19	13	Y	
Brad Star	Anglo	Overhaus Co-ordinator Mech	4-12-19	17	X	
IAN BAUET	Anoca	EEM , 51/52/53/62	4.12.19	28	Y	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 8 of 111
PRINTED COPIES OF THIS DOO	CUMENT ARE UNCONTRO	LLED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

TEAM SHEET

Name	Company	Role & Qualifications	Date	Industry Experience (yrs)	Consensus (Y/N)
N GLBert.	44 10	51,52,53 GZ	4/12/19	13.	Y
R. Kostowski	Angla	Gas Drainage Count 51,52,53 62	4/12/19	9	9
SCOTT BOLKLEY	ANCLO	MINING ENCINEER BI SPECIALIST SIZECZ	. 1 1	8	Y
CHIPS STERREINGS	ANGLO	HOUSE IN COOL SUPERINTENDORY DIPUTH SISSISS, GI ADV. DIFLORINA	4/12/19	15.	4
DEHEMAN	ONEWY	LONGWALL TRADE FITTER	05-12-15	15	Y
Steplen	Anglo	Geolech + Geology Sper	04/12/19	6	Y
LEE MORSE	SEAM SORVEYS	SURFACE SURVEY	ou[n]n	6	V
Max Show	Andres	Enfinitished Substantinosof	04-12-19	23	V.
Adam Goldsworthy	One Key	LW Trade Electrical	04/12/19	1/	V
LUKE Jakinsas	ONE KEY	Comprignes Possos	04/12/19	9	10

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 9 of 111

TEAM SHEET

oli	Shearer greater	4-12-19		Y	
		4 17	23		
Anglo	MEM	4 12/19	24	Y	
Austo	SHI SUPLINE	040xx,19	20	Y	
MIGLE	SI. 2. 5 GT MECH TRADE	E 14/12/19	13	4	
Angle	51,2/3 GZ		8	4	
ANGCO	OUTBYE OPERATIONS COOL	mara 4/12/19	23	7	
Anglo	Survey Countinator	4/12/19	8	У.	
0×	Geologist		15	4	
F	ANGLO ANGLO ANGLO Anglo	ANGCO OURBYE OPERATORS COOL	ANGLO OURS/E OPERATORS CONOMINA 4/12/19 ANGLO OURS/E OPERATORS CONOMINA 4/12/19 ANGLO OURS/E OPERATORS CONOMINA 4/12/19 ANGLO OURS/E OPERATORS CONOMINA 4/12/19	ANGCO OUTBYE OPURATION (OCTOBER 4/12/19 8 Anglo Servey Coordinator 4/12/19 8	ANGLO OUTBYE OPENATORS CONOMINA 4/12/19 8 Anglo Survey Continetor 4/12/19 8

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 10 of 111		
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING						

17/02/20 REVIEW TEAM SHEET

TEAM SHEET

Name	Company	Role & Qualifications	Date	Industry Experience (yrs)	Consensus (Y/N)	Signature
Dwayne Baridge	OKR	Filler	17-2-20	8	Y	
Dwayne Barridge Dovid Bunn	OKR	Electrical	17/2/4	2 8	Y	
MAIT FOREPAREICE	OKYZ	Openaton	17/2/20	11	Y	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
Extraction	05/03/2020 Date of Issue:		05/03/2020	Page 11 of 111		
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING						

operational delays

GROSVENOR COAL MINE RA-LW104 Secondary Extraction

ADDITIONAL CONTROLS All additional controls to be entered in Enablon Enablon No. **Action by Whom Target Date** Line Ref No. Hazard/Issue Additional Controls Access to Gas Plant/Surface -Build an all weather landing pad C Englebrecht 20/02/2020 TS.01218672 Seam/Loss of access to north side of Isaac river due to adverse weather TS.01218717 1 Confirm plan showing emergency wet 20/02/2020 Access to Gas Plant/Surface -J Mackey weather access via MN is applicable for Seam/Loss of access to north side of Isaac river due to adverse weather LW104 2 Access to Gas Plant/Surface -Develop strategy for LW103 subsidence 15/02/2020 TS.01218727 A Heap Seam/Surface ponding of water above surface dewatering workings due to ineffective drainage of subsidence zones 2 Access to Gas Plant/Surface -Flood Model to be reviewed to ensure LW104 A Heap 05/02/2020 TS.01218735 Seam/Surface ponding of water above is covered workings due to ineffective drainage of subsidence zones. 3 Access to Gas Plant/Surface -Confirm sufficient environmental offsets for A Heap 05/02/2020 TS.01218741 Seam/Uncontrolled / excessive surface surface works above LW104 clearing for drilling or access (gas drainage) leading to disturbance to environmentally or culturally significant areas 10/02/2020 TS.01218754 4 Access to Gas Plant/Surface -Confirm DSI procedures to manage flood T Evans Seam/Flood plain - impacts on the conditions are in line with Grosvenor Service boreholes etc leading to Procedure (regarding PCB batching facility on

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020			
Extraction	05/03/2020 Date of Issu		05/03/2020	Page 12 of 111			
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING							

the surface)

4	Access to Gas Plant/Surface – Seam/Flood plain – impacts on the Service boreholes etc leading to operational delays	Confirm location and impacts in relation to a flood event of any Stonedust boreholes on LW104	А Неар	05/02/2020	TS.01218756
5	Access to Gas Plant/Surface – Seam/Cumulative impacts on LW104 with an adjacent and subsided LW103 block leading to potential for environmental event (not witnessed at this operation previously)	Flood Model to be reviewed to ensure LW104 is covered	А Неар	05/02/2020	TS.01218758
5	Access to Gas Plant/Surface – Seam/Cumulative impacts on LW104 with an adjacent and subsided LW103 block leading to potential for environmental event (not witnessed at this operation previously)	Update Subsidence Crossline of LW104	L Morse	28/01/2020	TS.01218762
6	Access to Gas Plant/Surface – Seam/Inability to drill adequate goaf drainage holes due to enviro or Cultural heritage restrictions	Develop plan around scar trees in the planned 70m clearance corridor with Seamgas	D. O'Sullivan	10/02/2020	TS.01218767
6	Access to Gas Plant/Surface – Seam/Inability to drill adequate goaf drainage holes due to enviro or Cultural heritage restrictions	Review availability of offsets if additional goaf drainage holes required.	A Heap	10/02/2020	TS.01218776
7	Access to Gas Plant/Surface – Seam/Loss of access to MIA, MSF and any Other Projects causing production loss due to adverse weather	Consider bridge to access across river	R. Goonawardene	01/03/2020	TS.01218778

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020	
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 13 of 111	
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING					

8	Access to Gas Plant/Adverse weather/Business loss due to lack of access to boreholes during, wind, cyclones, lighting, and flooding	Complete an audit against the report and TARP for lightning and earthing protection for GCM LW104	B. Mulcahy	10/02/2020	TS.01218781
8	Access to Gas Plant/Adverse weather/Business loss due to lack of access to boreholes during, wind, cyclones, lighting, and flooding	Obtain copy of the report and strategy for lightning and protection for GCM LW104	C. Englebrecht	25/01/2020	TS.01218785
9	Access to Gas Plant/Adverse weather/Lightning strike leading to ignition underground or electric shock	Review lightning and earthing strategy	I Bailey	25/01/2020	TS.01218788
9	Access to Gas Plant/Adverse weather/Lightning strike leading to ignition underground or electric shock	Review lightning TARP in regard to actions to be taken working adjacent to a gas riser	I Bailey	25/01/2020	TS.01218791
10	Access to Gas Plant/Subsidence due to secondary extraction/Damage to mine surface infrastructure and third party infrastructure (P seam SIS)	Notify Arrow of the pending subsidence of LW104	C Englebrecht	10/02/2020	TS.01218794
10	Access to Gas Plant/Subsidence due to secondary extraction/ Damage to mine surface infrastructure and third party infrastructure (P seam SIS)	Powerline clearance survey post subsidence	I Bailey	1/03/2020	TS.01218796
10	Access to Gas Plant/Subsidence due to secondary extraction/ Damage to mine surface infrastructure and third party infrastructure (P seam SIS)	Review electrical services (e.g. PED loops and PED hut) impacted by subsidence and if any work is required to protect surface infrastructure.	Mick Britton	10/02/2020	TS.01218797

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020	
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 14 of 111	
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING					

10	Access to Gas Plant/Subsidence due to secondary extraction/ Damage to mine surface infrastructure and third party infrastructure (P seam SIS)	Review pieplines impacted by subsidence and if any work is required to protect surface infrastructure.	C Englebrecht	10/02/2020	TS.01218798
10	Access to Gas Plant/Subsidence due to secondary extraction/ Damage to mine surface infrastructure and third party infrastructure (P seam SIS)	Update signposting at crossings	I Bailey	10/02/2020	TS.01218800
10	Access to Gas Plant/Subsidence due to secondary extraction/ Damage to mine surface infrastructure and third party infrastructure (P seam SIS)	Update training package for light vehicles for awareness of subsidence cracks	P Borg	10/02/2020	TS.01218802
11	Access to Gas Plant/Subsidence due to secondary extraction/Subsidence cracking connecting mine workings with Isaac River - Inflow of water into workings	Check water head rating for seals / bulkheads confirm max water RL based on these head ratings	H Hearne	25/02/2020	TS.01218803
11	Access to Gas Plant/Subsidence due to secondary extraction/Subsidence cracking connecting mine workings with Isaac River - Inflow of water into workings	Confirm MG seals are specified based on requirements for TG105	H Hearne	25/02/2020	TS.01218804
11	Access to Gas Plant/Subsidence due to secondary extraction/Subsidence cracking connecting mine workings with Isaac River - Inflow of water into workings	Review Inflow Potential from major flood event for an extended period of time	А Неар	25/02/2020	TS.01218806
11	Access to Gas Plant/Subsidence due to secondary extraction/Subsidence	Review that goaf seals secondary support can withstand double abutment loading	S Giese	25/02/2020	TS.01218808

	GRO-10671-RA-LW104 Secondary	D-10671-RA-LW104 Secondary Original Issue Date: Vers		1	Print: 8/04/2020
	Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 15 of 111
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING					

	cracking connecting mine workings with Isaac River - Inflow of water into workings				
14	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Inflow of water into workings leading to potential for injury to personnel	Review ungrouted boreholes in LW104 block	L Morse	25/02/2020	TS.01218811
14	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Inflow of water into workings leading to potential for injury to personnel	Setup automated report for ungrouted boreholes in LW014 block (similar to LW103 seal up grouted borehole report)	L Morse	10/02/2020	TS.01218812
17	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Intersection of open borehole resulting in air leak increased potential of Spontaneous Combustion - Air leakage in into goaf from untreated hole	Sealing Management Plan for LW104	H Hearne	18/02/2020	TS.01218814
19	Mining under the 132,000 Volt Powerlink line to Townsville/LW104 Subsidence causing damage to the powerlines/If the jacks cannot be installed in time to combat the subsidence, there is a risk of the LW104 start date being delayed and causing production loss	Communicate the management plan to Grosvenor superintendents and SLT	N Gilbert	15/02/2020	TS.01218815
20	Hole into other workings/Inrush/Inrush into mine workings from adjoining/above workings	Confirm barrier pillar design between MNM and GRV operations	S Giese	10/02/2020	TS.01218816

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 16 of 111
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING				

21	Gas liberation into face area exceeding operational and legal requirements [CH4% >2.5%]/Gas concentrations prevent operation of face equipment	Communicate the status of the project and the timelines to increased drainage capacity to 17,000l/s	C Englebrecht	15/02/2020	TS.01218817
21	Gas liberation into face area exceeding operational and legal requirements [CH4% >2.5%] / Gas concentrations prevent operation of face equipment	Confirm and communicate shearer speed sensor trigger points and limits for LW104 kick off to CROs	J Agustin	15/02/2020	TS.01218818
21	Gas liberation into face area exceeding operational and legal requirements [CH4% >2.5%]/Gas concentrations prevent operation of face equipment	Ensure that the additional infrastructure is monitored through Citect	C Englebrecht	15/02/2020	TS.01218819
21	Gas liberation into face area exceeding operational and legal requirements [CH4% >2.5%]/Gas concentrations prevent operation of face equipment	Finalise RA for LW104 Goaf drainage strategy/review	C Englebrecht	15/02/2020	TS.01218820
23	Gas release during mining/Goaf collapse / caving expels large volumes of gas creating a general body exceeding operational and legal requirements [CH4% >2.5%]/Gas concentrations prevent operation of face equipment	NB - separate risk assessment including wind blast for first goaf formation	R Goonawardene	10/02/2020	TS.01218821
27	Floor gas emissions risk due to thin interburden resulting in production delays/Gas concentrations prevent operation of face equipment	Develop a gas predictive model for a longwall situation taking to account the effects of the abutment loading	S Giese	10/03/2020	TS.01218822

ſ	GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
	Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 17 of 111		
Ī	PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING						

28	Floor Gas zone not defined accurately/Not defining the floor gas zone can result in production delays section of the LW104 which is not planned	Implement piezo monitoring from the MG pillar to assist with identifying the source of floor gas	H Hearne	10/02/2020	TS.01218823
31	Gas release during mining/Barometric drop results in migration of toxic / irrespirable atmosphere into mine workings/Exposure to Toxic / Irrespirable atmospheres causing personal injury	Confirm a hard barriers separating the C Heading roadway outbye the 103 EPS is in place prior to commencing LW104 operation	H Hearne	10/02/2020	TS.01218824
31	Gas release during mining/Barometric drop results in migration of toxic / irrespirable atmosphere into mine workings/Exposure to Toxic / Irrespirable atmospheres causing personal injury	Produce SWI for managing C heading roadway outbye the 103 EPS. Include hard controls for stonedust, gas monitoring, barricading, access, etc.)	H Hearne	15/02/2020	TS.01218825
34	Increased CH4 in TG drive/shearer during start-up due to low (velocity) ventilation until first Goaf formation/Gas concentrations prevent operation of face equipment	Complete a First Goaf risk assessment for LW104	R Goonawardene	1/02/2020	TS.01218826
36	Accessing the LW face for recovery purposes resulting in a personal injury due to poor strata conditions, Poor face stability causing slabbing and injuring person working on face side of AFC during face recovery	Review procedure for installing standpipes / lances for face recovery on a face height greater than 4.2m	S Giese	15/02/2020	TS.01218827

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020	
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 18 of 111	
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING					

39	Known Geology/Extraction adjacent to edges of sandstone channels/Failure of roof on LW face causing production loss	Review options for the last 200m of LW104 retreat focusing on roof management, considering the learnings from LW101 and LW102, LW103 including bolt up.	S Giese	1/04/2020	TS.01218828
40	Known Geology/Extraction adjacent to edges of sandstone channels/Failure of roof adjacent to Gate ends causing production loss	Review business case for the cut profile for development versus cut horizon for the longwall in the MG and TG roadways	R Nowell	1/04/2020	TS.01218830
41	Known Geology/Gravity/Strata failure at gate-ends	Develop consolidation plan for gate ends	S Giese	15/02/2020	TS.01218832
42	Known Geology/Gravity/shotfiring in floor gas hazard zone in development causing delays (e.g. poor floor conditions)	Provide plan of area where shotfiring and/ PIFfing occurred	R Goonawardene	1/04/2020	TS.01218833
43	Known Geology/Gravity/Floor heave causing equipment clearance issues and/ or damage, Clearance for BSL, Monorail hoses dragging on the ground	Develop and distribute as mined cut profile in TG and MG roadway highlighting areas of low clearance	R Goonawardene	1/04/2020	TS.01218834
47	Known Geology/Mining through geological anomalies/Loss of horizon control or face stability issues causing production loss	LW Flight plans to be known structures	S Giese	25/02/2020	TS.01218836
52	Geotechnical considerations/Mining through non-standard driveage (i.e. tripper drives), This includes mining through known gateroad cavity zones/Roof / rib failure causing personal injury	Confirm the roadway is not greater than 5.0m high along the length of the block	J Mackey	25/02/2020	TS.01218837

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020	
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 19 of 111	
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING					

53	Geotechnical considerations/Mining into pre-driven roadways /Strata failure / cavities in gas drainage stubs causing personal injury or production loss	Design flight plans / excavation plans and false roof for LW104 chute roads to allow transition for bolt up and back fill floor to bolt row 1	S Giese	1/06/2020	TS.01218839
53	Geotechnical considerations/Mining into pre-driven roadways /Strata failure / cavities in gas drainage stubs causing personal injury or production loss	Develop a standard for backfilling stubs	S Giese	25/02/2020	TS.01218840
54	Geotechnical considerations/Increased stress as retreating face approaches previous install face/Roof fall in TG roadway or cut-through causing personal injury or production loss, Stress notch	Ensure that no significant planned maintenance activities occur in the stress notch zone	J Agustin	25/02/2020	TS.01218842
72	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Less than adequate operation of the inertisation plant and/or inertisation plant stops and causes TARP trigger to be reached and delay the mining operations	Confirm inert line is installed into the existing goaf seals prior to startup.	H Hearne	15/02/2020	TS.01218846
72	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Less than adequate operation of the inertisation plant and/or inertisation plant stops and	Investigate additional flow meters on UG nitrogen pipeline so we can measure what we are doing	H Hearne	01/05/20	TS.01268158

	GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
	Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 20 of 111
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING					

	causes TARP trigger to be reached and delay the mining operations				
77	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Oxygen ingress in to the goaf – Due to increased bleeder pressure across goaf resulting in possible increase in spon comb risk resulting in production delay triggered by TARPs	Plan to seal perimeter road when end of panel shaft is online	H Hearne	15/02/2020	TS.01218850
79	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Ingress of oxygen into the goaf due to UIS holes open through MG pillar	Conduct audit on intersected UIS holes in MG104	R Kostowski	25/02/2020	TS.01218853
91	Plant/Mining equipment not fit for purpose/Longwall equipment suitable to maintain acceptable level of risk for personnel working on the longwall face	Confirm road heights in belt road and TG roadway are outside 3.6m to 4.2m in height	J Mackey	20/02/2020	TS.01218856
92	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Additional gas and heat in the rear walkway, Change in ventilation pathway through the longwall equipment profile	Review the effectiveness of the ventilation change from 103 to 104 due to the MG103 EPS	H Hearne	25/02/2020	TS.01218860
93	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business	Complete RCA on Hyena effect	M.Wakeford	25/02/2020	TS.01218869

GRO-100	671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	on	05/03/2020	Date of Issue:	05/03/2020	Page 21 of 111
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING					

	interruption/Personnel ergonomics due to the increased cut height working in the rear walkway				
93	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Personnel ergonomics due to the increased cut height working in the rear walkway	Review design of sprays in rear walkway to be in a more appropriate position Flushing or dust suppression	B.Thomson	15/02/2020	TS.01218872
93	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Personnel ergonomics due to the increased cut height working in the rear walkway	Review requirement of the dust gutters in rear walkway and remove if not required	B.Thomson	15/02/2020	TS.01218874
94	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Risk of slabbing/ face spalling	Investigate sprag extensions	B Thomson	15/02/2020	TS.01218878
94	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Risk of slabbing/ face spalling	Review procedure to add relocating control equipment to the rear walkway prior to cutting at heights above 4.2m	J.Agustin	15/02/2020	TS.01218879
95	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Maintenance of all Longwall face equipment (e.g. Fl checks, Shearer, AFC, Bretby, PRS,	Ensure the maintenance strategy for cutting at heights above 4.2m reduces exposure to personnel (i.e. stables, flipper extensions, supported face)	J Agustin	25/02/2020	TS.01218882

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 22 of 111		
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING						

	DACs, Phones, Interchock hoses) exposing a CMW to falling material				
95	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Maintenance of all Longwall face equipment (e.g. Fl checks, Shearer, AFC, Bretby, PRS, DACs, Phones, Interchock hoses) exposing a CMW to falling material	Review GRO-5314-PRO-Equipment Hazard Zones in regards to cutting at heights above 4.2m	J.Agustin	25/02/2020	TS.01218886
97	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Operational capacity of longwall conveyance system with increased cutting rates due to increased cutting height above 4.2m	Investigate optimising the side shields to increase operating area for personnel in the rear walk way	J Agustin	15/02/2020	TS.01218891
97	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Operational capacity of longwall conveyance system with increased cutting rates due to increased cutting height above 4.2m	Perform bottleneck analysis on coal clearance systems to ensure capacity for mining at greater heights	J Agustin	25/02/2020	TS.01218901
97	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Operational capacity of longwall conveyance system with	Review conveyor system capacity	M Shields	15/02/2020	TS.01218904

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 23 of 111		
PRINTED COPIES OF THIS DOC	PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING					

	increased cutting rates due to increased cutting height above 4.2m				
98	Plant/Failure or damage of Longwall components resulting in the business interruption/Failure of Longwall components	Maintenance strategy for major components to align component failure cycle and physical locations adequate for the changeout of those components (e.g. planned down drive change out)	R Skinner	25/02/2020	TS.01218907
98	Plant/Failure or damage of Longwall components resulting in the business interruption/Failure of Longwall components	Moranbah North style flushing shields to be used in LW104 (Change management to be completed)	B.Starr	5/02/2020	TS.01218910
98	Plant/Failure or damage of Longwall components resulting in the business interruption/Failure of Longwall components	Review issues with AFC pan wear around articulation joints during LW103 and remediation strategy for LW104	B.Starr	1/02/2020	TS.01218914
98	Plant/Failure or damage of Longwall components resulting in the business interruption/Failure of Longwall components	Review issues with Anti topple encountered in LW103 and remediation strategy for LW104	B.Thomson	1/02/2020	TS.01218919
98	Plant/Failure or damage of Longwall components resulting in the business interruption/Failure of Longwall components	Review issues with electrical crossover and impact on the Bretby and remediation strategy for LW104	S.Wood	1/02/2020	TS.01218921
98	Plant/Failure or damage of Longwall components resulting in the business interruption/Failure of Longwall components	Review longwall 104 monitoring strategy for deck wear	B.Thomson	1/02/2020	TS.01218922
98	Plant/Failure or damage of Longwall components resulting in the business	Review the Komatsu service agreement	M Britton	15/02/2020	TS.01218923

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 24 of 111		
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING						

	interruption/Failure of Longwall components				
99	Plant/Business interruption due to failure of stonedust application in TG for LW production/Stonedust pipeline blocks up	Communicate LW104 stonedusting strategy	J.Simonds	5/02/2020	TS.01218928
99	Plant/Business interruption due to failure of stonedust application in TG for LW production/Stonedust pipeline blocks up	Ensure that 2 x bulk dusters are available for the longwall in the event the stonedust dropholes fail	J Lancaster	5/02/2020	TS.01218930
99	Plant/Business interruption due to failure of stonedust application in TG for LW production/Stonedust pipeline blocks up	Provide schedule and location for services boreholes based on development intersection dates	R Goonawardene	25/01/2020	TS.01218931
100	Plant/Supply of Components /Failure to meet time lines causing delays, Lack of spares for Becker equipment, Turn-around time for repairs, POCVs and Solenoid availability	BCO to provide report when min/max stock levels for spares are altered	W Peyper	3/02/2020	TS.01219654
100	Plant/Supply of Components /Failure to meet time lines causing delays, Lack of spares for Becker equipment, Turn-around time for repairs, POCVs and Solenoid availability	Investigation for using local supplier for critical spares ongoing	I Bailey	1/02/2020	TS.01218934
100	Plant/Supply of Components /Failure to meet time lines causing delays, Lack of spares for Becker equipment, Turn-around time for repairs, POCVs and Solenoid availability	Review min max levels of spares (Becker, DACs, solonoids, POCVs, etc.) in stores to ensure they are sufficient	J Agustin	1/02/2020	TS.01218936

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 25 of 111		
PRINTED COPIES OF THIS DOC	PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING					

102	Plant/Dewatering /LOM dewatering insufficient to manage water on the longwall face, Water gathering at the low point in the (TG drive)	Communicate the LOM dewatering strategy	N Gilbert	01/02/2020	TS.01218938
102	Plant/Dewatering /LOM dewatering insufficient to manage water on the longwall face, Water gathering at the low point in the (TG drive)	Develop a strategy to dewater the longwall face	B Thomson	15/02/2020	TS.01218940
102	Plant/Dewatering /LOM dewatering insufficient to manage water on the longwall face, Water gathering at the low point in the (TG drive)	Investigate sealed area water capacity	N Gilbert	25/02/2020	TS.01218942
102	Plant/Dewatering /LOM dewatering insufficient to manage water on the longwall face, Water gathering at the low point in the (TG drive)	Review capability to install additional crossblock holes	N Gilbert	01/02/2020	TS.01218948
103	Plant/Compressed air supply insufficient/Compressor failure	Review the LOM compressed air capacity requirements	N Gilbert	15/02/2020	TS.01218951
104	Plant/Raw water supply insufficient, Competing with MNM for water volume from Eungella, Moranbah wash plant running out of water taking priority from Grosvenor, Raw water quality being insufficient/Compressor failure	Investigate using arrow waste water to prop up raw water consumption	A Heap	20/02/2020	TS.01218952
104	Plant/Raw water supply insufficient, Competing with MNM for water volume from Eungella, Moranbah wash plant running out of water taking priority from	Review who is required in the Water Steering Committee for managing water across the Moranbah-Grosvenor complex to mitigate the shortage of water	K Bachmann	25/02/2020	TS.01218957

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 26 of 111
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING				

h = =	Grosvenor, Raw water quality being insufficient/Compressor failure		
	1		

NON-CONSENSUS ITEMS All Non-Consensus Items to be entered into Enablon for <u>immediate</u> follow up						
Line Ref No.	Item or Issue	Reason for Non-Consensus	Immediate Follow up by Whom	Date		
		NON-CONSENSUS ITEMS				
	NO	NON-OCI.				

	HAZARDS/ISSUES RANKED Taken From Initial Risk Rank IRR and Initial Consequence Rankings in IRR								
Line Ref No.	List A - Hazard/Issue	IRR	Line Ref No.	List B - Hazard/Issue	Conseq				
19	Mining under the 132,000 Volt Powerlink line to Townsville/LW104 Subsidence causing damage to the powerlines/If the jacks cannot be installed in time to combat the subsidence, there is a risk of the LW104 start date being delayed and causing production loss	185	9	Access to Gas Plant/Adverse weather/Lightning strike leading to ignition underground or electric shock	45				
31	Gas release during mining/Barometric drop results in migration of toxic / irrespirable atmosphere into mine workings/Exposure to Toxic / Irrespirable atmospheres causing personal injury	185	16	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Shearer intersecting poly / PVC/ Fibreglass or abandoned drilling materials (ie BHA) within the mining horizon - Flying objects / projectiles leading to personal injury, e.g. 3 x steel in seam hazards in block, Crossblock dewatering hole	45				

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 27 of 111
PRINTED COPIES OF THIS DOO	CUMENT ARE UNCONTRO	LLED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

39	Known Geology/Extraction adjacent to edges of sandstone channels/Failure of roof on LW face causing production loss	185	17	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Intersection of open borehole resulting in air leak increased potential of Spontaneous Combustion - Air leakage in into goaf from untreated hole	45
47	Known Geology/Mining through geological anomalies/Loss of horizon control or face stability issues causing production loss	185	31	Gas release during mining/Barometric drop results in migration of toxic / irrespirable atmosphere into mine workings/Exposure to Toxic / Irrespirable atmospheres causing personal injury	45
95	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Maintenance of all Longwall face equipment (e.g. FI checks, Shearer, AFC, Bretby, PRS, DACs, Phones, Interchock hoses) exposing a CMW to falling material	185	36	LW Recovery - Geology/LW Recovery - Geology/Accessing the LW face for recovery purposes resulting in a personal injury due to poor strata conditions, Poor face stability causing slabbing and injuring person working on face side of AFC during face recovery	45
40	Known Geology/Extraction adjacent to edges of sandstone channels/Failure of roof adjacent to Gate ends causing production loss	175	95	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Maintenance of all Longwall face equipment (e.g. FI checks, Shearer, AFC, Bretby, PRS, DACs, Phones, Interchock hoses) exposing a CMW to falling material	45
98	Plant/Failure or damage of Longwall components resulting in the business interruption/Failure of Longwall components - Drums, Down drives, AFC sprockets, AFC gear boxes, BSL Sprockets, Chains (Flight Bars), Bolts, Deck Wear in the ramp area, drive gear boxes, interchock hoses, cables, flippers cylinders, crushed hammer, promos and lock out, Solenoids/ POCV	175	19	Mining under the 132,000 Volt Powerlink line to Townsville/LW104 Subsidence causing damage to the powerlines/If the jacks cannot be installed in time to combat the subsidence, there is a risk of the LW104 start date being delayed and causing production loss	4M

GRO-10671-RA-LW104 Secondary	Original Issue Date:	riginal Issue Date: Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 28 of 111
PRINTED COPIES OF THIS DOO	CUMENT ARE UNCONTRO	LLED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

36	LW Recovery - Geology/LW Recovery - Geology/Accessing the LW face for recovery purposes resulting in a personal injury due to poor strata conditions, Poor face stability causing slabbing and injuring person working on face side of AFC during face recovery	145	39	Known Geology/Extraction adjacent to edges of sandstone channels/Failure of roof on LW face causing production loss	4M
10	Access to Gas Plant/Subsidence due to secondary extraction/Damage to mine surface infrastructure and third party infrastructure (P seam SIS), NB- the Powerlink line to Townscville	135	47	Known Geology/Mining through geological anomalies/Loss of horizon control or face stability issues causing production loss	4M
22	Gas release during mining/Gas liberation into face area exceeding operational and legal requirements [CH4% >2.5%]/Gas concentrations prevent operation of diesel equipment in TG roadway causing production loss	135	38	Known Geology/Loading, failure and caving of over- laying strata/Converging event causing personnel injury	35
54	Geotechnical considerations/Increased stress as retreating face approaches previous install face/Roof fall in TG roadway or cut-through causing personal injury or production loss, Stress notch	135	69	Ventilation/Heat generated by mining equipment and geo-thermal gradient influencing mine conditions/Inadequate Ventilation / cooling causing production loss or personnel injury	35
65	Edges of Goaf Areas/Goaf edge overruns support Gate-end/Goaf flushing causing production loss	135	84	Frictional ignition/Managing Frictional Ignition/Gas sources (blowers in the floor, gas under the pan, gas out of the roof) result in increased safety risk to CMWs or loss of production	35
21	Gas release during mining/Gas liberation into face area exceeding operational and legal requirements [CH4% >2.5%]/Gas concentrations prevent operation of face equipment	12M	91	Plant/Mining equipment not fit for purpose/Longwall equipment suitable to maintain acceptable level of risk for personnel working on the longwall face	35
23	Gas release during mining/Goaf collapse / caving expels large volumes of gas creating a general body	12M	93	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business	35

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 29 of 111
PRINTED COPIES OF THIS DOO	CUMENT ARE UNCONTRO	LLED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

	exceeding operational and legal requirements [CH4% >2.5%]/Gas concentrations prevent operation of face equipment			interruption/Personnel ergonomics due to the increased cut height working in the rear walkway	
26	Gas release during mining/Inadequate gas post- drainage (goaf), resulting in >2.5% TG CH4%, and production delays/Gas concentrations prevent operation of face equipment	12M	11	Access to Gas Plant/Subsidence due to secondary extraction/Subsidence cracking connecting mine workings with Isaac River - Inflow of water into workings	зм
27	Gas release during mining/Floor gas emissions risk due to thin interburden resulting in production delays/Gas concentrations prevent operation of face equipment	12M	12	Access to Gas Plant/Subsidence due to secondary extraction/Subsidence cracking connecting mine workings from basalt aquifer - Inflow of water into workings	3M
28	Gas release during mining/Floor Gas zone not defined accurately/Not defining the floor gas zone can result in production delays section of the LW104 which is not planned	12M	22	Gas release during mining/Gas liberation into face area exceeding operational and legal requirements [CH4% >2.5%]/Gas concentrations prevent operation of diesel equipment in TG roadway causing production loss	3M
29	Gas release during mining/Increased gas ingress due to propagation through geological structures/Faults in the longwall block may promote fracturing to both lower and upper seams increasing gas ingress	12M	37	Known Geology/Loading, failure and caving of over- laying strata/Increased propensity for weighting causing production loss	3M
48	Known Geology/Mining through geological anomalies/Exposing GML seam resulting in increased gas make on the longwall face	12M	40	Known Geology/Extraction adjacent to edges of sandstone channels/Failure of roof adjacent to Gate ends causing production loss	3М
99	Plant/Business interruption due to failure of stonedust application in TG for LW production/Stonedust pipeline blocks up	12M	41	Known Geology/Gravity/Strata failure at gate-ends	3M
101	Plant/Hydraulic integrity/Loss of hydraulic integrity, Pump station reliability,Replacement POCVs and solenoids not being fit for purpose	12M	49	Known Geology/Automation failure/Loss of horizon control or face stability issues causing production loss	3M

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 30 of 111
PRINTED COPIES OF THIS DO	CUMENT ARE UNCONTRO	LLED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

9	Access to Gas Plant/Adverse weather/Lightning strike leading to ignition underground or electric shock	10M	51	Known Geology/Retreat extraction of the seam at a grade/Excessive Creep	3M
16	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Shearer intersecting poly / PVC/ Fibreglass or abandoned drilling materials (ie BHA) within the mining horizon - Flying objects / projectiles leading to personal injury, e.g. 3 x steel in seam hazards in block, Crossblock dewatering hole	10M	54	Geotechnical considerations/Increased stress as retreating face approaches previous install face/Roof fall in TG roadway or cut-through causing personal injury or production loss, Stress notch	3M
17	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Intersection of open borehole resulting in air leak increased potential of Spontaneous Combustion - Air leakage in into goaf from untreated hole	10M	57	Geotechnical considerations/Roadway failure/Loss of services (water, compressed air, monitoring, dewater, communications, power)	зм
11	Access to Gas Plant/Subsidence due to secondary extraction/Subsidence cracking connecting mine workings with Isaac River - Inflow of water into workings	9M	58	Geotechnical considerations/MG103 EPS issues/Abutment load impacting the MG103 EPS	3M
12	Access to Gas Plant/Subsidence due to secondary extraction/Subsidence cracking connecting mine workings from basalt aquifer - Inflow of water into workings	9М	59	Geotechnical considerations/Roof/floor convergence/ out of tolerance driveage results in BSL/LW infrastructure becoming iron bound in belt road/BSL/LW infrastructure becoming "iron-bound" in belt road causing production loss	3M
37	Known Geology/Loading, failure and caving of over- laying strata/Increased propensity for weighting causing production loss	9М	65	Edges of Goaf Areas/Goaf edge overruns support Gate-end/Goaf flushing causing production loss	3M
41	Known Geology/Gravity/Strata failure at gate-ends	9M	98	Plant/Failure or damage of Longwall components resulting in the business interruption/Failure of Longwall components - Drums, Down drives, AFC sprockets, AFC gear boxes, BSL Sprockets, Chains	3M

GRO-10671-RA-LW104 Secondary	Original Issue Date:	inal Issue Date: Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 31 of 111
PRINTED COPIES OF THIS DOO	CUMENT ARE UNCONTRO	LLED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

				(Flight Bars), Bolts, Deck Wear in the ramp area, drive gear boxes, interchock hoses, cables, flippers cylinders, crushed hammer, promos and lock out, Solenoids/ POCV	
51	Known Geology/Retreat extraction of the seam at a grade/Excessive Creep	9M	10	Access to Gas Plant/Subsidence due to secondary extraction/Damage to mine surface infrastructure and third party infrastructure (P seam SIS), NB- the Powerlink line to Townscville	3 M
59	Geotechnical considerations/Roof/floor convergence/ out of tolerance driveage results in BSL/LW infrastructure becoming iron bound in belt road/BSL/LW infrastructure becoming "iron-bound" in belt road causing production loss	9М	33	Gas release during mining/Goaf collapse / caving expels large volumes of gas creating oxygen deficient atmosphere/Exposure to oxygen deficient atmospheres	25
69	Ventilation/Heat generated by mining equipment and geo-thermal gradient influencing mine conditions/Inadequate Ventilation / cooling causing production loss or personnel injury	9M	34	Gas release during mining/Increased CH4 in TG drive/shearer during start-up due to low (velocity) ventilation until first Goaf formation/Gas concentrations prevent operation of face equipment	25
91	Plant/Mining equipment not fit for purpose/Longwall equipment suitable to maintain acceptable level of risk for personnel working on the longwall face	9M	35	Gas release during mining/Progressive sealing required during extraction/Exposure to Toxic / Irrespirable atmospheres due to sealing installation not in place, Failure to build a seal in time	25
93	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Personnel ergonomics due to the increased cut height working in the rear walkway	9M	45	Known Geology/Hardness of coal and stone hardness when cutting out of seam/Increased fly rock	25
3	Access to Gas Plant/Surface – Seam/Uncontrolled / excessive surface clearing for drilling or access (gas drainage) leading to disturbance to environmentally or culturally significant areas	8M	60	Geotechnical considerations/Operating the LW/Face support system failure, resulting in increased risk of cavities and injury to CMWs due to falling debris and remediation work, e.g US Flippers	25

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 32 of 111
PRINTED COPIES OF THIS DOO	CUMENT ARE UNCONTRO	LLED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

7	Access to Gas Plant/Surface – Seam/Loss of access to MIA, MSF and any Other Projects causing production loss due to adverse weather	8M	61	Geotechnical considerations/Operating the LW/Face support system failure, resulting in increased risk of cavities and loss of production	25
15	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Mining through an unknown borehole leading to Inflow of gas into workings	8M	63	Geotechnical considerations/Excessive loading during Longwall cutting / retreating/Uncontrolled failure of pillars	25
24	Gas release during mining/Changes in ERZ-NERZ Boundaries/Non-Hazardous Area Certified electrical equipment operating in the ERZ1 zone	8M	64	Edges of Goaf Areas/Gap between chocks/Goaf materials falling between shields causing personal injury	25
25	Gas release during mining/Caving / subsidence closing off gas drainage wells/Loss of gas drainage capability causing production loss	8M	70	Ventilation/Change ventilation from Homotropal to Antitropal/Ventilation changes affecting mining environment and leading to delays	25
30	Gas release during mining/Ineffective ventilation and gas monitoring/Non-Hazard Area Certified electrical equipment operating in the ERZ1 zone	8M	71	Ventilation/Ventilation Reversal inbye of LW/Pressure change on face leads to production delay	25
50	Known Geology/Changes in seam gradient whilst mining/Loss of horizon control or face stability issues.	8M	74	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Improperly stored stowage in gateroads against existing seals drawing oxygen across the stow,	25
55	Geotechnical considerations/Loss of creep control or misalignment of MG 104/Inability to access the face via designated walkway causing personal injury or production loss	8M	81	Frictional ignition/Managing Frictional Ignition/Steel strike (drum hitting TG bolts, steel, chocks, etc.) causing a spark results in increased FI risk	25
60	Geotechnical considerations/Operating the LW/Face support system failure, resulting in increased risk of cavities and injury to CMWs due to falling debris and remediation work, e.g US Flippers	8M	82	Frictional ignition/Managing Frictional Ignition/MG or TG support setting against bolts causing spark in roadway leading to increased frictional ignition risk	25

Version:	1	Print: 8/04/2020	
Date of Issue:	05/03/2020	Page 33 of 111	
	9.509-243.18-6.50-2	Date of Issue: 05/03/2020 ED AND DEEMED VALID ONLY ON THE	

61	Geotechnical considerations/Operating the LW/Face support system failure, resulting in increased risk of cavities and loss of production	8M	83	Frictional ignition/Managing Frictional Ignition/Cutting hard material (e.g., pyrite or sandstone) results in increased potential for a frictional ignition	25
66	Coal Extraction Sequence/Long term exposure to respirable dust, High ventilation velocities raises dust, Dry coal due to gas drainage increasing dust make/Exposure above the respirable dust OEL	8M	89	Frictional ignition/Managing Frictional Ignition/Shearer intersecting metallic objects/artefacts in boreholes / gas-well leading to delays in operation	25
68	Ventilation/Main fans stoppage, VCD fail, open / short circuit , flooded roadways etc./Insufficient Ventilation causing production loss or personnel injury	8M	90	Frictional ignition/Managing Frictional Ignition/Cutting concrete or shotcrete increasing frictional ignition risk	25
73	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Geological anomalies increases spontaneous combustion potential and risks to operations	8M	94	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Risk of slabbing/ face spalling	25
75	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Incomplete goafing creates air path to goaf until square up, resulting in increased spontaneous combustion risk and production delays	8M	1	Access to Gas Plant/Surface – Seam/Loss of access to north side of Isaac river due to adverse weather	2M
76	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Air wash zone not adequately controlled (floxal), resulting in increased spontaneous combustion risk and production delays	8M	2	Access to Gas Plant/Surface – Seam/Surface ponding of water above workings due to ineffective drainage of subsidence zones.	2M
77	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Oxygen ingress in to the goaf – Due to increased bleeder pressure across goaf resulting in possible increase in	8M	4	Access to Gas Plant/Surface – Seam/Flood plain – impacts on the Service boreholes etc leading to operational delays	2M

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020				
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 34 of 111				
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING								

	spon comb risk resulting in production delay triggered by TARPs				
78	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Failed goaf seal introduces oxygen into goaf causing production delay	8M	6	Access to Gas Plant/Surface – Seam/Inability to drill adequate goaf drainage holes due to enviro or Cultural heritage restrictions	2M
79	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Ingress of oxygen into the goaf due to UIS holes open through MG pillar	8M	7	Access to Gas Plant/Surface – Seam/Loss of access to MIA, MSF and any Other Projects causing production loss due to adverse weather	2M
92	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Additional gas and heat in the rear walkway, Change in ventilation pathway through the longwall equipment profile	8M	8	Access to Gas Plant/Adverse weather/Business loss due to lack of access to boreholes during, wind, cyclones, lighting, and flooding	2M
94	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Risk of slabbing/ face spalling	8M	20	Hole into other workings/Inrush/Inrush into mine workings from adjoining/above workings	2M
96	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Design of electrical equipment suitable for greater cut height (e.g. cable length, voltage drop)	8M	25	Gas release during mining/Caving / subsidence closing off gas drainage wells/Loss of gas drainage capability causing production loss	2M
97	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Operational capacity of longwall conveyance system with increased cutting rates due to increased cutting height above 4.2m	8M	26	Gas release during mining/Inadequate gas post- drainage (goaf), resulting in >2.5% TG CH4%, and production delays/Gas concentrations prevent operation of face equipment	2M

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020				
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 35 of 111				
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING								

100	Plant/Supply of Components /Failure to meet time lines causing delays, Lack of spares for Becker equipment, Turn-around time for repairs, POCVs and Solenoid availability	8M	27	Gas release during mining/Floor gas emissions risk due to thin interburden resulting in production delays/Gas concentrations prevent operation of face equipment	2M
102	Plant/Dewatering /LOM dewatering insufficient to manage water on the longwall face, Water gathering at the low point in the (TG drive)	8M	28	Gas release during mining/Floor Gas zone not defined accurately/Not defining the floor gas zone can result in production delays section of the LW104 which is not planned	2M
103	Plant/Compressed air supply insufficient/Compressor failure	8M	29	Gas release during mining/Increased gas ingress due to propagation through geological structures/Faults in the longwall block may promote fracturing to both lower and upper seams increasing gas ingress	2M
104	Plant/Raw water supply insufficient, Competing with MNM for water volume from Eungella, Moranbah wash plant running out of water taking priority from Grosvenor, Raw water quality being insufficient/Insufficient water	8M	30	Gas release during mining/Ineffective ventilation and gas monitoring/Non-Hazard Area Certified electrical equipment operating in the ERZ1 zone	2M
38	Known Geology/Loading, failure and caving of over- laying strata/Converging event causing personnel injury	6M	32	Gas release during mining/Loss of vacuum to goaf plant/Gas concentrations prevent operation of face equipment	2M
49	Known Geology/Automation failure/Loss of horizon control or face stability issues causing production loss	6M	42	Known Geology/Gravity/shotfiring in floor gas hazard zone in development causing delays (e.g. poor floor conditions)	2M
57	Geotechnical considerations/Roadway failure/Loss of services (water, compressed air, monitoring, dewater, communications, power)	6M	43	Known Geology/Gravity/Floor heave causing equipment clearance issues and/ or damage, Clearance for BSL, Monorail hoses dragging on the ground	2M

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 36 of 111
PRINTED COPIES OF THIS DOO	CUMENT ARE UNCONTRO	LLED AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

58	Geotechnical considerations/MG103 EPS issues/Abutment load impacting the MG103 EPS	6M	44	Known Geology/Hardness of coal and stone hardness when cutting out of seam/Increased frequency of pick changes on shearer drum	2M
84	Frictional ignition/Managing Frictional Ignition/Gas sources (blowers in the floor, gas under the pan, gas out of the roof) result in increased safety risk to CMWs or loss of production	6М	46	Known Geology/Loss of horizon control/Low yield - coal quality	2M
1	Access to Gas Plant/Surface – Seam/Loss of access to north side of Isaac river due to adverse weather	5L	48	Known Geology/Mining through geological anomalies/Exposing GML seam resulting in increased gas make on the longwall face	2M
2	Access to Gas Plant/Surface – Seam/Surface ponding of water above workings due to ineffective drainage of subsidence zones.	5L	50	Known Geology/Changes in seam gradient whilst mining/Loss of horizon control or face stability issues.	2M
4	Access to Gas Plant/Surface – Seam/Flood plain – impacts on the Service boreholes etc leading to operational delays	5L	52	Geotechnical considerations/Mining through non- standard driveage (i.e. tripper drives), This includes mining through known gateroad cavity zones/Roof / rib failure causing personal injury	2M
5	Access to Gas Plant/Surface – Seam/Cumulative impacts on LW104 with an adjacent and subsided LW103 block leading to potential for environmental event (not witnessed at this operation previously)	5L	53	Geotechnical considerations/Mining into pre-driven roadways /Strata failure / cavities in gas drainage stubs causing personal injury or production loss	2M
6	Access to Gas Plant/Surface – Seam/Inability to drill adequate goaf drainage holes due to enviro or Cultural heritage restrictions	5L	55	Geotechnical considerations/Loss of creep control or misalignment of MG 104/Inability to access the face via designated walkway causing personal injury or production loss	2M
8	Access to Gas Plant/Adverse weather/Business loss due to lack of access to boreholes during, wind, cyclones, lighting, and flooding	5L	56	Geotechnical considerations/Strata failures in Bleeder Road / Perimeter Rd /Restricted access to VCDs and	2M

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 37 of 111
PRINTED COPIES OF THIS DOO	CUMENT ARE UNCONTRO	LLED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

				bleeder / perimeter road causing personal injury or production loss	
13	Access to Gas Plant/Subsidence due to secondary extraction/Extent of subsidence breaches authority/licence to operate agreement	5L	62	Geotechnical considerations/Abutment load being transferred onto seal sites/Catastrophic Failure of goaf seal releases goaf gases or water into mine workings from adjacent workings/goaf	2M
14	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Inflow of water into workings leading to potential for injury to personnel	5L	67	Coal Extraction Sequence/Equipment damage/Insufficient clearance for service installations	2M
18	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Old asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing business interruptions/ financial impacts (only very small section at end of LW/mains)	5L	68	Ventilation/Main fans stoppage, VCD fail, open / short circuit , flooded roadways etc./Insufficient Ventilation causing production loss or personnel injury	2M
20	Hole into other workings/Inrush/Inrush into mine workings from adjoining/above workings	5L	72	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Less than adequate operation of the inertisation plant and/or inertisation plant stops and causes TARP trigger to be reached and delay the mining operations	2M
32	Gas release during mining/Loss of vacuum to goaf plant/Gas concentrations prevent operation of face equipment	5L	73	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Geological anomalies increases spontaneous combustion potential and risks to operations	2M
33	Gas release during mining/Goaf collapse / caving expels large volumes of gas creating oxygen deficient atmosphere/Exposure to oxygen deficient atmospheres	5L	75	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Incomplete goafing creates air path to goaf until square up, resulting in increased spontaneous combustion risk and production delays	2M

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 38 of 111
PRINTED COPIES OF THIS DOO	CUMENT ARE UNCONTRO	LLED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

44	ground Known Geology/Hardness of coal and stone hardness when cutting out of seam/Increased frequency of pick changes on shearer drum Known Geology/Hardness of coal and stone hardness	5L	80	MG pillar Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Surface cracking leading to ingress of oxygen into the goaf Plant/Increasing the cut height to greater than 4.2m causing personal safety or business	2M
43	Known Geology/Gravity/Floor heave causing equipment clearance issues and/ or damage, Clearance for BSL, Monorail hoses dragging on the	5L	79	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Ingress of oxygen into the goaf due to UIS holes open through	2M
42	Known Geology/Gravity/shotfiring in floor gas hazard zone in development causing delays (e.g. poor floor conditions)	5L	78	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Failed goaf seal introduces oxygen into goaf causing production delay	2M
35	Gas release during mining/Progressive sealing required during extraction/Exposure to Toxic / Irrespirable atmospheres due to sealing installation not in place, Failure to build a seal in time	5L	77	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Oxygen ingress in to the goaf — Due to increased bleeder pressure across goaf resulting in possible increase in spon comb risk resulting in production delay triggered by TARPs	2M
34	Gas release during mining/Increased CH4 in TG drive/shearer during start-up due to low (velocity) ventilation until first Goaf formation/Gas concentrations prevent operation of face equipment	5L	76	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Air wash zone not adequately controlled (floxal), resulting in increased spontaneous combustion risk and production delays	2M

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020			
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 39 of 111			
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING							

				conveyance system with increased cutting rates due to increased cutting height above 4.2m	
53	Geotechnical considerations/Mining into pre-driven roadways /Strata failure / cavities in gas drainage stubs causing personal injury or production loss	5L	100	Plant/Supply of Components /Failure to meet time lines causing delays, Lack of spares for Becker equipment, Turn-around time for repairs, POCVs and Solenoid availability	2M
56	Geotechnical considerations/Strata failures in Bleeder Road / Perimeter Rd /Restricted access to VCDs and bleeder / perimeter road causing personal injury or production loss	5L	101	Plant/Hydraulic integrity/Loss of hydraulic integrity, Pump station reliability,Replacement POCVs and solenoids not being fit for purpose	2M
62	Geotechnical considerations/Abutment load being transferred onto seal sites/Catastrophic Failure of goaf seal releases goaf gases or water into mine workings from adjacent workings/goaf	5L	102	Plant/Dewatering /LOM dewatering insufficient to manage water on the longwall face, Water gathering at the low point in the (TG drive)	2M
64	Edges of Goaf Areas/Gap between chocks/Goaf materials falling between shields causing personal injury	5L	103	Plant/Compressed air supply insufficient/Compressor failure	2M
67	Coal Extraction Sequence/Equipment damage/Insufficient clearance for service installations	5L	104	Plant/Raw water supply insufficient, Competing with MNM for water volume from Eungella, Moranbah wash plant running out of water taking priority from Grosvenor, Raw water quality being insufficient/Insufficient water	2M
70	Ventilation/Change ventilation from Homotropal to Antitropal/Ventilation changes affecting mining environment and leading to delays	5L	3	Access to Gas Plant/Surface – Seam/Uncontrolled / excessive surface clearing for drilling or access (gas drainage) leading to disturbance to environmentally or culturally significant areas	2L&R
71	Ventilation/Ventilation Reversal inbye of LW/Pressure change on face leads to production delay	5L	15	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Mining through an unknown borehole leading to Inflow of gas into workings	2L&R

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020			
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 40 of 111			
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING							

72	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Less than adequate operation of the inertisation plant and/or inertisation plant stops and causes TARP trigger to be reached and delay the mining operations	SL	18	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Old asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing business interruptions/ financial impacts (only very small section at end of LW/mains)	2L&R
80	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Surface cracking leading to ingress of oxygen into the goaf	5L	21	Gas release during mining/Gas liberation into face area exceeding operational and legal requirements [CH4% >2.5%]/Gas concentrations prevent operation of face equipment	2L&R
81	Frictional ignition/Managing Frictional Ignition/Steel strike (drum hitting TG bolts, steel, chocks, etc.) causing a spark results in increased FI risk	5L	23	Gas release during mining/Goaf collapse / caving expels large volumes of gas creating a general body exceeding operational and legal requirements [CH4% >2.5%]/Gas concentrations prevent operation of face equipment	2L&R
82	Frictional ignition/Managing Frictional Ignition/MG or TG support setting against bolts causing spark in roadway leading to increased frictional ignition risk	5L	24	Gas release during mining/Changes in ERZ-NERZ Boundaries/Non-Hazardous Area Certified electrical equipment operating in the ERZ1 zone	2L&R
83	Frictional ignition/Managing Frictional Ignition/Cutting hard material (e.g., pyrite or sandstone) results in increased potential for a frictional ignition	5L	99	Plant/Business interruption due to failure of stonedust application in TG for LW production/Stonedust pipeline blocks up	2L&R
89	Frictional ignition/Managing Frictional Ignition/Shearer intersecting metallic objects/artefacts in boreholes / gas-well leading to delays in operation	5L	14	Access to Gas Plant/Mining through an un-grouted borehole / gas-well/Inflow of water into workings leading to potential for injury to personnel	2Н
90	Frictional ignition/Managing Frictional Ignition/Cutting concrete or shotcrete increasing frictional ignition risk	5L	66	Coal Extraction Sequence/Long term exposure to respirable dust, High ventilation velocities raises dust, Dry coal due to gas drainage increasing dust make/Exposure above the respirable dust OEL	2Н

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020			
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 41 of 111			
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING							

85	Frictional ignition/Managing Frictional Ignition/Incendive sparking from sandstone bodies/ free stone on the AFC / BSL causing production loss	4L	92	Plant/Increasing the cut height to greater than 4.2m causing personal safety or business interruption/Additional gas and heat in the rear walkway, Change in ventilation pathway through the longwall equipment profile	2Н
63	Geotechnical considerations/Excessive loading during Longwall cutting / retreating/Uncontrolled failure of pillars	3L	5	Access to Gas Plant/Surface – Seam/Cumulative impacts on LW104 with an adjacent and subsided LW103 block leading to potential for environmental event (not witnessed at this operation previously)	2E
74	Method of Controlling Spontaneous Combustion/Spontaneous Combustion/Improperly stored stowage in gateroads against existing seals drawing oxygen across the stow,	3L	13	Access to Gas Plant/Subsidence due to secondary extraction/Extent of subsidence breaches authority/licence to operate agreement	2E
52	Geotechnical considerations/Mining through non- standard driveage (i.e. tripper drives), This includes mining through known gateroad cavity zones/Roof / rib failure causing personal injury	2L	87	Frictional ignition/Managing Frictional Ignition/Excessive heat from chain rerouters causing ignition	15
86	Frictional Ignition/Managing Frictional Ignition/TG STD Support - shearer cutting into the steel cans/ PCBs containing steel mesh leading to regulatory breach, NB: potential for cold spark being initiated	2L	88	Frictional ignition/Managing Frictional Ignition/Excessive heat from trapping shoe wear / shear pin on the AFC causing production delay	15
87	Frictional ignition/Managing Frictional Ignition/Excessive heat from chain rerouters causing ignition	2L	85	Frictional ignition/Managing Frictional Ignition/Incendive sparking from sandstone bodies/ free stone on the AFC / BSL causing production loss	1M
88	Frictional ignition/Managing Frictional Ignition/Excessive heat from trapping shoe wear / shear pin on the AFC causing production delay	2L	86	Frictional Ignition/Managing Frictional Ignition/TG STD Support - shearer cutting into the steel cans/ PCBs containing steel mesh leading to regulatory breach, NB: potential for cold spark being initiated	1L&R

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020			
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 42 of 111			
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINT							

MANAGEMENT APPROVAL

The Authorising Persons Shall Be either:

- . The Process Manager for activities and the Statutory Manager; or
- . The Site Senior Executive.

Signing below acknowledges that they have reviewed the risk assessment, authorise the additional controls and accept that the residual risk rank (RRR) is at an acceptable level

Name	Position	Date
Rob Nowell	Process Manager	23 1 2020
Wouter Niehaus	Statutory Manager	7/2/2020
Trent Griffiths	Site Senior Executive	17/2/2020
Logan Mohr	Process Manager	zileleo

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020			
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 43 of 111			
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING							

Generic Energy Hazard	Definition
Biological	Potential for positive or negative impacts resulting from interaction of activities with biological agents. This could be harm by exposure to biological hazards, flora and fauna including insect stings, bites, bacteria and other disease agents, viruses and natural poisons or environmental harm to biodiversity.
Chemical	Potential for harm by chemicals, includes acids, alkalis, organic substance (e.g. gases, fuels, lubes, degreasers, solvents, paints) ozone depleting substances etc.
Climate / Natural Events	Potential for harm by exposure to extreme natural, environmental or climate sources and events (including lightning, high winds flooding).
Dust / Inhalable Particulates	Potential for harm by exposure to fine dry particles of matter in the air. Dusts, mists, vapours and aerosols (Coal dust, silica dust, environmental nuisance/community complaints).
Electrical	Potential for harm to people, equipment/assets or the environment by exposure to electrical sources.
Ergonomics	Potential for exposure to physical actions or forces, including poor design, thus presenting the potential for harm associated with exertion, excessive, unnatural or repetitive movement, poor posture or other undesired physical stress on the human body.
Explosives	Potential for harm by exposure to explosive material (e.g. unexploded detonators, tie down lines etc).
External Threats	Potential for harm resulting from an external event outside of the operations direct control (e.g. legislation., government actions, community lobby groups etc).
Fire	Potential for harm by exposure to a burning mass of material (e.g. building fires, spontaneous combustion).
Gravitational (Objects)	Potential for harm by exposure to falling objects, unexpected movement (ground, slope, structure) due to uncontrolled gravitational forces.
Gravitational (People)	Potential for harm to people caused by their being subject to falling, unexpected movement or in any other way resulting from their being exposed to uncontrolled gravitational forces (including slips, trips, falls).
Land	Potential harm on the naturally occurring environment due to the use or management of land resulting from pollution, clearance or any other degradation.
Lighting	Potential for harm resulting from excessive light or inadequate lighting in the workplace.
Mechanical (Fixed)	Potential for harm by exposure to interaction with sources of fixed mechanical energy (including those powered by electrical, hydraulic, pneumatic, combustion etc).
Mechanical (Mobile)	Potential for harm by exposure to interaction with sources of mobile (self-propelled) mechanical energy (including those powered by electrical, hydraulic, pneumatic, combustion etc).
Magnetic	Potential for harm to people, equipment/assets or the environment by exposure to magnetic sources (including handling metal objects in strong magnetic fields).
Noise	Potential for harm by exposure to sudden or prolonged exposure to excessive noise or community complaints.
Personal / Behaviour	Potential for harm associated with intentional undesired behavioural actions, stresses or stressors.
Pressure / Explosions	Potential for harm by exposure to sudden release of pressure from a specific source (including pressure waves from explosions, pressurised systems, cylinders, springs, chains, flying bits, or community complaints associated with air blast overpressure etc).
Psychological	Potential for harm associated with stressors from situations, conditions or events that could create negative emotional, cognitive or behavioural outcomes.
Radiation	Potential for harm by exposure to radiation waves whether natural or manufactured sources (characterised as either ionising or non-ionising sources).
Social / Cultural	Potential for positive or negative impacts resulting from interaction of business activities with social or cultural expectations (includes social licences to operate).
Thermal	Potential for harm by exposure to or variations in temperature (hot or cold) but excludes anything that is on fire which has a separate category.
Vibration	Potential for harm resulting from prolonged exposures to excessive vibration or blast vibration.
Waste	Potential for harm caused by the inappropriate use of resources, inadequate management or disposal of waste material (including pollution and green house gases).
Water	Potential for harm caused by the inappropriate use of water resources or inappropriate management or disposal of water.
Other	Potential for harm by exposure to other hazards/aspects e.g. friction, bio-chemical.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 44 of 111
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEFMED VALID ONLY ON THE DAY OF PRINTING				

		(Consid	CONSEQUENCE LEVEL er the maximum reasonable potential consequer	nce of the event)		
(Addi	Consequence Type tional "Impact Types" may exist for an event, iden ify & rate accordingly)	1 - Insignificant	2 - Minor	3 - Moderate	4 - High	5 - Major
	(S) Harm to People - Safety	First aid case	Medical treatment case	Lost time injury	Permanent disability or single fatality	Numerous permanent disabilities or mul iple fatalities
	(H) Harm to People - Occupational Health	Exposure to heal h hazard resul ing in temporary discomfort	Exposure to health hazard resulting in symptoms requiring medical intervention and full recovery (no lost time)	Exposure to health hazards/ agents (over the OEL) resulting in reversible impact on health (with lost time) or permanent change with no disability or loss of quality of life	Exposure to health hazards/ agents (significantly over the OEL) resulting in irreversible impact on health with loss of quality of life or single fatality	Exposure to heal h hazards/ agents (significantly over the OEL) resulting in irreversible impact on health with loss of qualit of life of a numerous group/population or mul iple fatalities
	(E) Environmental Impact	Lasting days or less; limited to small area (metres); receptor of low significance/ sensitivity (industrial area)	Lasting weeks; reduced area (hundreds of metres); no environmentally sensitive species/habitat)	Las ing months; impact on an extended area (kilometres); area with some environmental sensitivity (scarce/ valuable environment).	Lasting years; impact on sub-basin; environmentally sensitive environment/ receptor (endangered species/ habitats)	Permanent impact; affects a whole basin or region; highly sensitive environment (endangered species, we lands, protected habitats)
	(S) Social / Community Impact	Minor disturbance of culture/ social structures	Some impacts on local population, mos ly repairable. Single stakeholder complaint in reporting period	On going social issues. Isolated complaints from community members/ stakeholders	Significant social impacts. Organized community protests threatening continuity of operations	Major widespread social impacts. Community reaction affecting business continuity. "License to operate" under jeopardy
	(L&R) Legal & Regulatory	Technical non-compliance. No warning received; no regulatory repor ing required	Breach of regulatory requirements; report/involvement of authority. Attracts administrative fine	Minor breach of law, report/investigation by authority. Altracts compensation/ penalties/ enforcement action	Breach of the law, may attract criminal prosecution, penal ies/ enforcement action. Individual licence temporarily revoked	Significant breach of the law. Individual or company law suits; permit to operate substantially modified or withdrawn
	(M) Material Losses / Damage / Business Interruption	< 0.01 % of Annual Revenue / Total Assets	0.01 - 0.1 % of Annual Revenue / Total Assets	0.1 - 1.0 % of Annual Revenue / Total Assets	1 - 5 % of Annual Revenue / Total Assets	> 5 % of Annual Revenue / Total Assets
	(R) Reputation	Minor impact; awareness/ concern from specific individuals	Limited impact; concern/ complaints from certain groups/ organizations (e.g. NGOs) period	Local impact; public concern/ adverse publicity localised within neighbouring communities	Suspected reputational damage; local/ regional public concern and reactions	Noticeable reputational damage; national/ international public attention and repercussion
5 - Almost Certain	Considering the The unwanted event is almost certain to happen within the LOM (Life of Mine). In the case of repetitive/frequent tasks the unwanted event has or will occur in order of one or more times per year. In terms of major events, as also in the case of long term health, environmental or social impacts, it may happen only once in the LOM.	e presence and magnitude of the hazard and the exp 11 (Medium)	CIKELIHOOD osure to that hazard (number of people and frequence) 16 (Significant)	cy of the tasks exposing those people), as also the s 20 (Significant)	tatus of existing controls 23 (High)	25 (High)
4 - Likely	There is a high probability that the unwanted event will occur within the LOM. In the case of repetitive/frequent tasks the unwanted event has occurred or is likely to occur in order of less than once per year. In terms of major events, as also in the case of long term health, environmental or social impacts, it might happen once in he LOM.	7 (Medium)	12 (Medium)	17 (Significant)	21 (High)	24 (High)
3 - Possible	It is possible that the unwanted event can occur within the LOM. In the case of repetitive/frequent tasks, the unwanted event has occurred or is likely to occur in order of once every 5-10 years. In terms of major events, as also in the case of long term health, environmental or social impacts, there is a low probability for the event to happen in he LOM.	4 (Low)	8 (Medium)	13 (Significant)	18 (Significant)	22 (High)
2 - Unlikely	There is a low probability for he unwanted event to occur within the LOM. In the case of repetitive/frequent tasks, the unwanted event has occurred some time or is likely to occur not more than once every 10-20 years. In terms of major events, as also in the case of long term health, environmental or social impacts, there is a low probability for he event to happen in the LOM.	2 (Low)	5 (Low)	9 (Medium)	14 (Significant)	19 (Significant)
1 - Rare	There is a very low probability for the unwanted event to occur within the LOM. In the case of repetitive/frequent tasks there are no records of the event occurring or it is highly unlikely that it will occur within the next 20 years. In terms of major events, as also the case of long term health, environmental or social impacts, there is a very low probability for the event to ever happen.	1 (Low)	3 (Low)	6 (Medium)	10 (Medium)	15 (Significant)

Risk Rating	Risk Level	Guidelines for Risk Matrix	3.71
21 to 25	High	A high risk exists that management's objectives may not be achieved. Appropriate mitigation strategy to be devised immediately	11
13 to 20	Significant	A significant risk exists that management's objectives may not be achieved. Appropriate mitigation strategy to be devised as soon as possible	
6 to 12	Medium	A moderate risk exists that management's objectives may not be achieved. Appropriate mitigation strategy to be devised as part of the normal management process.	= 1
1 to5	Low	A low risk exists that management's objectives may not be achieved. Monitor risk, no further mitigation required.	= 1

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 45 of 111

Surface Features

1. Isaac River

The Isaac River is situated across LW104 from CH1185 to CH0939; see Figure 1. Depth of cover below the river ranges from 255m to 285m. Experience from the adjacent Moranbah North Mine, that has subsided the river in prior longwall panels at shallower depths show that the likelihood of water ingress into the goaf following extraction is negligible. The Grosvenor Subsidence Management Plan outlines the impact to the Isaac River 1st, 2nd, 3rd and 4th order watercourse, and possible percolation to the basalt aquifer if fracturing reaches channel inverts, and the monitoring arrangements of impact are as per GRO – 4164 – PLAN – Water Management Plan is a requirement of the Grosvenor Coal Mine Environmental Authority (EA). There are no subsidence mitigation piles driven into the bank through the LW104 section.

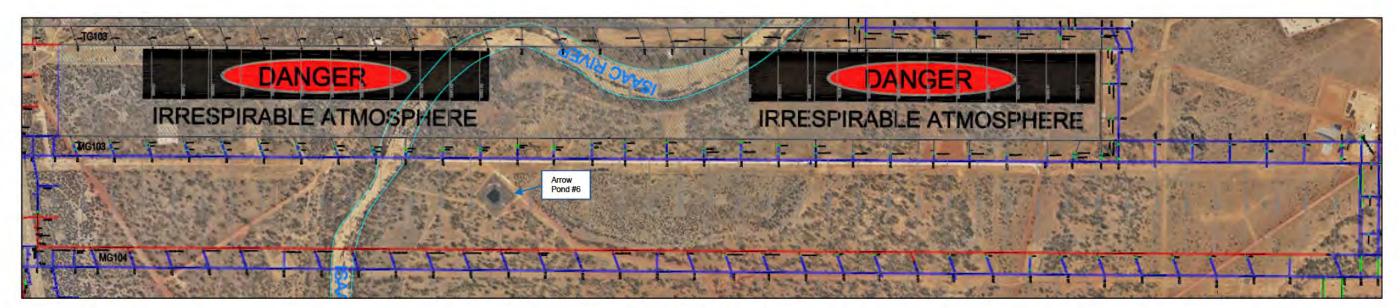


Figure 1 - Surface Features

Teviot Brook crosses the bleeder road as shown in Figure 2.

Figure 2 - Teviot Brook crossing bleeder road

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 46 of 111
PRINTED COPIES OF THIS DOO	LIMENT ARE UNCONTROL	LED AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

2. Ped Lines

Ped Loop 1 runs along the TG side of 104, and Ped Loop2 runs along the MG side of 104 as shown (purple) in Figure 3.

Figure 3 - Ped loop

3. Powerlink Powerline

A major Powerlink powerline runs across LW104 approx. from CH3900 to bleeder road. Three Powerlink towers are predicted to be immediately affected by subsidence (#2254, #2255, #2256). A study was completed by Downer/MSEC to establish procedures to identify, measure, control, mitigate and repair potential impacts that might occur on Powerlink's power line potentially or directly affected by mining operations as a result of the mining of LW104. Actions from this report, MSEC926 - Powerlink Subsidence Management Plan for Grosvenor LW104 Rev B 191119, have been put in the system.

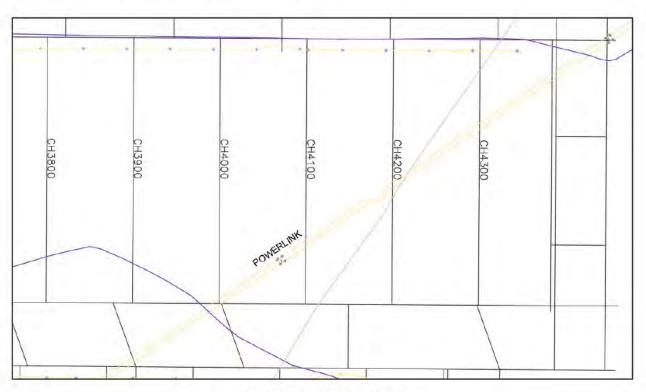
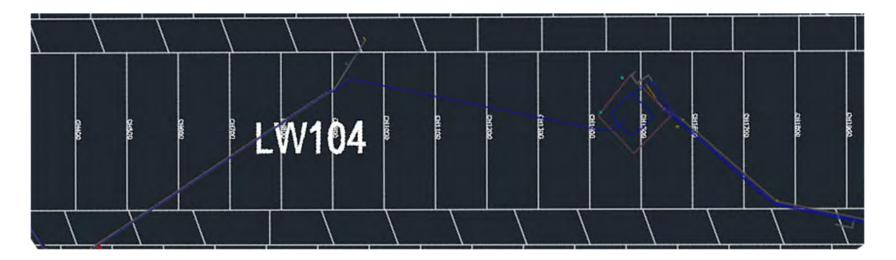


Figure 4 - Powerlink Powerline

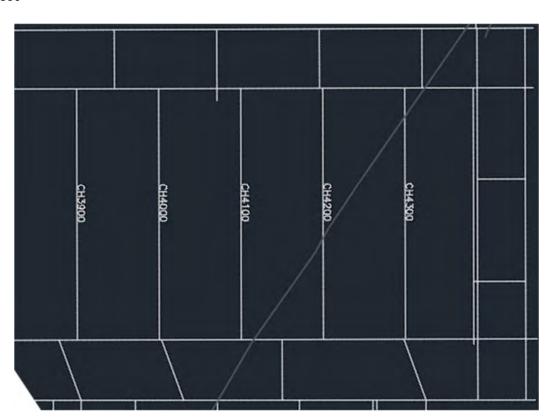

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 47 of 111


4. Arrow Power, gas and water reticulation lines

Arrow gas lines cross the block in the following locations:

• From TG CH100 to MG CH300

• From MG CH500 through the centre of the panel and exiting again on the MG side at CH 1900



GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 48 of 111
PRINTED COPIES OF THIS DOC	LIMENT ARE LINCONTROLL	ED AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

• From MG CH3250 to TG CH3320

• There is a decommissioned gas line from MG Ch4100 to TG CH 4350

- Arrow have their own monitoring regime for subsidence
- Arrow have a subsidence mitigation method for their pipelines

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 49 of 111
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROLLE	D AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

Raw water line runs across the block from Ch 2555 in the MG to Ch2925 in the TG; see Figure 5. To capture goaf gas a gas line runs:

- 5m inside the TG rib from Ch4343 to the take-off face;
- . From Ch2268 in the MG to Ch2116 in the TG; and
- From Ch3730 in the MG and the TG.

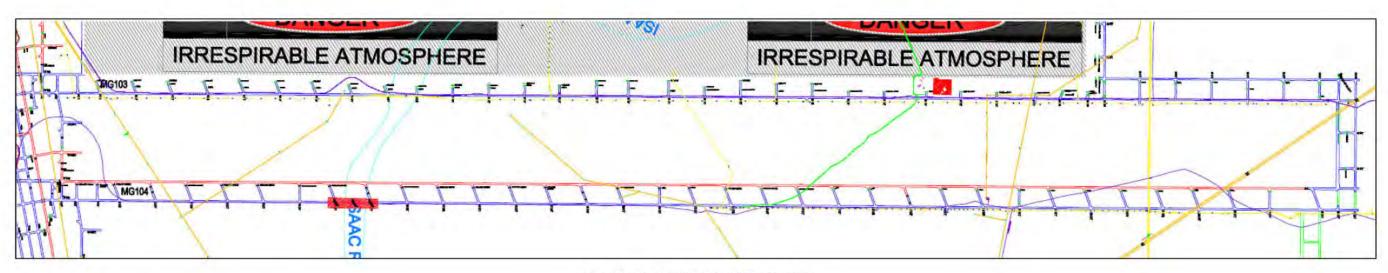


Figure 5 - Electrical, Water and Gas services

5. Areas of significant cultural heritage

The area above LW104 panel, as well as designated areas for the face line boreholes and goaf drainage holes has been surveyed for cultural artefacts. Cultural Heritage surveys have identified scar trees within the panel area to be subsided, there are scar trees adjacent to the TG104 goaf drainage clearing. All other artefacts have been collected and preserved as part of the cultural heritage survey activities.

6. Dams

Arrow Pond #6 is located above LW104, at approximately CH1500, and there is a project to relocate the contents of this dam prior to subsiding that area.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 50 of 111

Figure 6 - Arrow Pond

- Action is underway to install pipeline and tanks to remove water from Pond #6 (~ 2-4ML)
- Pond #6 contains waste water / process water from Arrow Node #2 and seam water from Pod #5 and Pod #6
- Is included in the Arrow Handover / Subsidence schedule (updated monthly with MOP process
- An arrow dam is south of LW104 in the mains, the distance from CH00 to the dam is approx. 220m
- The mains dams are evaporation ponds

Figure 7 - Arrow Dam

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 51 of 111
PRINTED COPIES OF THIS DOO	CLIMENT ARE LINCONTRO	LED AND DEEMED VA	ALID ONLY ON THE	DAY OF PRINTING

RA-LW104 Secondary Extraction

RSH.002.030.0055

7. Roads

The current life of mine road (Arrow 201 Rd) crossed LW104 from TG CH50 to MG CH300

Plan to divert this road past Shaft 16 around to MG107 (over the mains)

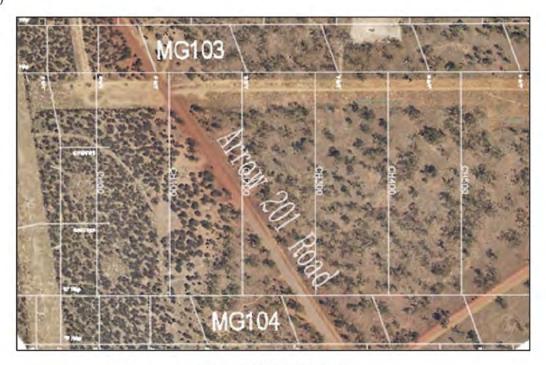


Figure 8 - Life Of Mine Road

A service road to the mid-block Arrow dam runs from MG CH1900 to the dam at CH1500. A road runs across the block from MG CH3250 to TG3320

Figure 9 - Mid-block road

A road runs to the Gas Plant from MG CH3900 to bleeder road.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020 Date of Issue:		05/03/2020	Page 52 of 111
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROLI	LED AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

Figure 10 - Road to Gas Plant

8. Temporary buildings

There are no temporary structures above LW104.

GRO-10671-RA-LW104 Secondary	Original Issue Date: 05/03/2020	Version: Date of Issue:	1 05/03/2020	Print: 8/04/2020 Page 53 of 111
	44144	Butto of foodio.	DOIGOIZOZO	
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROLL	ED AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

No.	ISSUE OR STEP IN OPERATION	ENERGY/HAZARD/ISSUE THAT MAY BE PRESENT	DESCRIBE THE RISK	EXISTING CONTROLS		TIAL F		ADDITIONAL CONTROLS	The second second	K RA (RRR	TING	Acceptable YES = RRR below 13 NO = RRR above 13 and enter into High Risk
	OPERATION	THAT MAT BE PRESENT			С	TIL	R		С	L	R	(>13s) & Non-Consensus Items Table
1	Access to Gas Plant	Surface – Seam	Loss of access to north side of Isaac river due to adverse weather	Air support services to access surface areas Alternate travel routes via MNM GRO-314-SWI - Managing Extreme Weather Events with regards to access to the mine gas and ventilation surface Infrastructure due to wet weather GRO-204-PRO- Training Competence Scheme GRO-215-PRO-Personnel On Boarding Gas drainage infrastructure includes remote monitoring via Citect. Critical assets are built outside of the 1:1000yr flood level. Approval from MNM SSE for access to the gas plant from MNM	2M	2	5L	Confirm plan showing emergency wet weather access via MN is applicable for LW104 – J Mackey Build an all weather landing plan – C Englebrecht	2M	2	5L	
2			Surface ponding of water above workings due to ineffective drainage of subsidence zones.	Low potential inflow into working low due to high depth of cover Pumping of ponded water from LW101 during wet season to reduce risk of overflow into 102 and 103 GRO-4201-PLAN- Grosvenor Plan of operation GRO-7481-PLAN-Subsidence Management Plan GRO-7731-EVP Subsidence Rehabilitation procedure 215056_Moranbah_North_Grosvenor_Flood_Modelling_v01 - Flood modelling for pre and post subsidence GRO-7481-PLAN-Subsidence GRO-7481-PLAN-Subsidence GRO-7481-PLAN-Subsidence GRO-7481-PLAN-Subsidence GRO-7481-PLAN-Subsidence GRO-7481-PLAN-Subsidence GRO-7481-PLAN-Subsidence Management Plan includes management of surface ponding of water GRO-4200-PMT Grosvenor Coal Mine Environmental Authority (EA)	2M	2	5L	Flood Model to be reviewed to ensure LW104 is covered – A Heap Develop strategy for LW103 subsidence surface dewatering – A Heap	2M	2	5L	
3			Uncontrolled / excessive surface clearing for drilling or access (gas drainage) leading to disturbance to environmentally or culturally significant areas	Splitting of goaf drainage clearing either side of river and directional drilling outside of river and riparian zone where possible GRO-300- HMP Disturbance, Penetration, Excavation and Rehabilitation GRO-4201-PLAN- Grosvenor Plan of operation GRO-830-EVP- Cultural heritage management Biodiversity offsets GRO-4200-PMT Grosvenor Coal Mine Environmental Authority (EA) GRO-3385-PRO-Permit to Mine Permit to Work Process	2L &R	3	8M	Confirm sufficient environmental offsets for surface works above LW104 – A Heap	2L &R	3	8M	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 54 of 111

4	Flood plain – impacts on the Service boreholes etc leading to operational delays	Floodplain in and around LW104 – very low chance of water migration GRO-300- HMP Disturbance, Penetration, Excavation and Rehabilitation GRO-4201-PLAN- Grosvenor Plan of operation GRO-314-SWI - Managing Extreme Weather Events with regards to access to the mine gas and ventilation surface Infrastructure due to wet weather Stonedust line across the longwall face (contingency if stonedust borehole is unavailable)	2M	2	51	Confirm location and impacts in relation to a flood event of any Stonedust boreholes on LW104 – A Heap Confirm DSI procedures to manage flood conditions are in line with Grosvenor Procedure (regarding PCB batching facility on the surface) – T Evans	2M	2	51	
5	Cumulative impacts on LW104 with an adjacent and subsided LW103 block leading to potential for environmental event (not witnessed at this operation previously)		2E	2	5L	Flood Model to be reviewed to ensure LW104 is covered – A Heap Update Subsidence Crossline of LW104 – L Morse	2E	2	5L	
6	Inability to drill adequate goaf drainage holes due to enviro or Cultural heritage restrictions	Preparation work completed to plan	2M	2	5L	Review availability of offsets if additional goaf drainage holes required. – A Heap Develop plan around scar trees in the planned 70m clearance corridor with Seamgas – A Heap	2M	2	5L	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 55 of 111

			GRO-300-HMP- Disturbance, Penetration, excavation and rehabilitation, Permit to Disturb system GRO-5861-STD Grosvenor Mine Planning Standard - Identified & on mine plan Approved biodiversity offset strategy Drilling options around environmental no go zones on LW103 surface Arrow handover process (JIMP) for planning and permits GRO-7481-PLAN-Subsidence Management Plan includes known boreholes GRO-4200-PMT Grosvenor Coal Mine Environmental Authority (EA) Planned Drilling Program during the dry season.								
7		Loss of access to MIA, MSF and any Other Projects causing production loss due to adverse weather	Air support services to access surface areas GRO-314-SWI - Managing Extreme Weather Events with regards to access to the mine gas and ventilation surface Infrastructure due to wet weather GRO-4164-PLAN-Water Management Plan 2x fuel farms at MIA, Fuel tank at MSF (shaft 3) Infrastructure includes remote monitoring via Citect. Fuel Tank at Seamgas Compound Critical assets are built outside of the 1:1000yr flood level.	2M	3	8M	Consider bridge to access across river – Already Actioned	2M	3	8M	
8	Adverse weather	Business loss due to lack of access to boreholes during, wind, cyclones, lighting, and flooding	GRO-3313-RA Mine Earthing Lightning Inertisation capabilities GRO-314-SWI-Managing Extreme Weather Events GRO-1432-TARP Lightning GRO-1431-TARP-Cyclones GRO-1436-TARP-High Winds GRO-1434-TARP-Flooding GRO-4801- STD LW standard area management system - Cable recovery and pipe management Site has had assessment completed for earthing and lightning protection Grosvenor Mine - Borehole Earthing & Lightning Protection Study Live tracking of the lightning	2M	2	5L	Obtain copy of the report and strategy for lightning and protection for GCM LW104 - for C Englebrecht Complete an audit against the report and TARP for lightning and earthing protection for GCM LW104	2M	2	5L	
9	Adverse weather	Lightning strike leading to ignition underground or electric shock	GRO-3313-RA Mine Earthing Lightning Inertisation capabilities GRO-1432-TARP Lightning GRO-4801- STD LW standard area management system - Cable recovery and pipe management	48	1	10 M	Review lightning TARP in regard to actions to be taken working adjacent to a gas riser – R Kostowski Review lightning and earthing strategy – I Bailey	48	1	10 M	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	L	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 56 of 111

			The mine intersects workings with cased boreholes BIN and stand offs requirements Site has had assessment completed for earthing and lightning protection Borehole data base Lightning Study Live tracking of the lightning								
10	Subsidence due to secondary extraction	Damage to mine surface infrastructure and third party infrastructure (P seam SIS) NB- the Powerlink line to Townsville is covered ijn	Goaf UIS borehole TARP-1430 Survey plan Survey Subsidence monitoring and modelling Anglo-Arrow co-development agreement (JIMP) GRO-3985-PRO – Grosvenor Coal Mine Arrow Energy well handover procedure Dedicated easements GRO-7481-PLAN-Subsidence Management Plan GRO-4200-PMT Grosvenor Coal Mine Environmental Authority (EA) GRO-7731-EVP-Subsidence Rehabilitation Procedure Permit to Mine Monthly Powerline Survey GRO-7820-EVP-Environmental monitoring Procedure Signposting of subsidence area	3 M	3	13 S	Notify Arrow of the pending subsidence of LW104 – C Englebrecht Powerline clearance survey post subsidence – I Bailey Update signposting at crossings – I Bailey Review pieplines impacted by subsidence and if any work is required to protect surface infrastructure. – C Englebrecht Review electrical services (e.g. PED loops and PED hut) impacted by subsidence and if any work is required to protect surface infrastructure. – Mick Britton Update training package for light vehicles for awareness of subsidence cracks – P Borg	3M	2	9M	
11		Subsidence cracking connecting mine workings with Isaac River - Inflow of water into workings	 GRO-5861-STD Grosvenor mine planning standard - Mine Design Depth of cover minimum 200m Historical data from adjacent mined LW101/102/LW103 GRO-7481-PLAN-Subsidence Management Plan GRO-4164-PLAN-Water Management Plan GRO-4200-PMT Grosvenor Coal Mine Environmental Authority (EA) B215056_Moranbah_North_Grosvenor_Flood_Modelling_v01 - LW 102 Inflow potential report Subsidence modelling and monitoring GRO - 9 - PHMP- Inrush GRO-16-PHMP-Methane Drainage LW 103 Hazard plan DRG - 15155 GRO-3385-PRO-Permit to Mine Borehole database (Acquire database) GRO-3602-CHK - Borehole Intersection Notice 	3M	2	9M	Review Inflow Potential from major flood event for an extended period of time – A Heap Review that goaf seals secondary support can withstand double abutment loading – S Giese Check water head rating for seals / bulkheads confirm max water RL based on these head ratings – H Hearne Confirm MG seals are specified based on requirements for TG105 – H Hearne	3M	2	9M	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 57 of 111

		GRO-42-HMP – Mine Inspection system, GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection GRO-8804-PMT Permit to Drill (UIS) GRO-3985-PRO – Grosvenor Coal Mine Arrow Energy well handover procedure Subsidence controls installed along the river Realtime monitoring of Isaac River water levels and rainfall Goaf seals are rated for 10m water head from TG104 33 to 22ct Arrow Energy & Anglo American							
12	Subsidence cracking connecting mine workings from basalt aquifer - Inflow of water into workings	interaction Management Plan (JIMP) GRO-5861-STD Grosvenor mine planning standard - Mine design Depth of cover – 150-180m ABOVE Historical data from adjacent mined LW101/2 GRO-7481-PLAN-Subsidence Management Plan GRO-4164-PLAN-Water Management Plan GRO-4200-PMT Grosvenor Coal Mine Environmental Authority (EA) B215056_Moranbah_North_Grosvenor_Flood_Modelling_v01 - LW 102 Inflow potential report Subsidence modelling and monitoring MSEC1010 - Subsidence Model Review Q4 2018 GRO - 9 - PHMP- Inrush LW 103 Hazard plan DRG - 15155 GRO-3385-PRO-Permit to Mine Borehole database GRO-3595-HMP - Intersecting Boreholes GRO-3602-CHK - Borehole Intersection Notice GRO-42-HMP - Mine Inspection system, GRO-77-SOP - Underground Workplace Inspections system - ERZ controller inspection GRO-8804-PMT Permit to Drill (UIS) Arrow Energy & Anglo American interaction Management Plan (JIMP)	3M	2	9M	3M	2	9M	
13	Extent of subsidence breaches authority/licence to operate agreement	Subsidence monitoring Subsidence modelling GRO-4201-PLAN- Grosvenor Plan of operation GRO-5861-STD Grosvenor mine planning standard - Mine Design GRO-7481-PLAN-Subsidence Management Plan GRO-4200-PMT Grosvenor Coal Mine Environmental Authority (EA)	2E	2	5L				

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 58 of 111

14	Mining through an un-grouted borehole / gas-well	Inflow of water into workings leading to potential for injury to personnel	 GRO – 9 – PHMP- Inrush GRO – 16 – PHMP- Gas Drainage GRO - 1434-TARP- Flooding LW 103 Hazard plan GRO-3385-PRO-Permit to Mine GRO-4164-PLAN-Water Management Plan Borehole database GRO-3595-HMP – Intersecting Boreholes GRO-3602-CHK – Borehole Intersection Notice GRO-5609-TARP – Longwall Creep and Face Alignment GRO-8804-PMT Permit to Drill (surface boreholes) GRO-42-HMP – Mine Inspection system GRO-77-SOP – Underground Workplace Inspections system GRO-7481-PLAN-Subsidence Management Plan includes known boreholes GRO-4200-PMT Grosvenor Coal Mine Environmental Authority (EA) GRO-3985-PRO Arrow Energy & Anglo American well head handover procedure GRO-3446-RA Arrow Energy & Anglo American interaction -Data collection from arrow Water Management through the pumps 	2H	2	5L	Review ungrouted boreholes in LW104 block – L Morse Setup automated report for ungrouted boreholes in LW014 block (similar to LW103 seal up grouted borehole report) – L Morse	2H	2	5L	
15		Mining through an unknown borehole leading to Inflow of gas into workings	 RA for LOM dewatering strategy GRO – 9 – PHMP- Inrush GRO-42-HMP – Mine Inspection system, GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection GRO – 15 – PHMP – Ventilation Gas Monitoring and interlocking controls 	2L &R	3	8M					
16		Shearer intersecting poly / PVC/ Fibreglass or abandoned drilling materials (ie BHA) within the mining horizon - Flying objects / projectiles leading to personal injury e.g. 3 x steel in seam hazards in block Crossblock dewatering hole	 Arrow Handover process LW 104 Hazard plan Borehole database ERZ Controller Inspections GRO-3595-HMP – Intersecting Boreholes GRO-3602-CHK – Borehole Intersection Notice GRO-8804-PMT Permit to Drill (UIS) GRO-3385-PRO-Permit to Mine GRO-5372-STD- LW Operational standards- Face/Pick Sprays GRO-3223-SWI-Operational No go zones Stat inspections GRO-3303-HMP control of frictional ignition 	48	1	10 M					

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 59 of 111

			GRO-8515-TARP Longwall frictional ignition Cross block dewatering hole management plan								
		Intersection of open borehole resulting in air leak increased potential of Spontaneous Combustion - Air leakage in into goaf from untreated hole	Hazard plan LW104 GRO-3385-PRO-Permit to Mine GRO-10-PHMP Spontaneous Combustion GRO-14-PHMP Gas management (Monitoring) Gas monitoring (Tube bundle) GRO-3602-CHK – Borehole Intersection Notice Borehole database (Acquire Database) GRO-42-HMP – Mine Inspection system GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection Work orders regarding, goaf monitoring and sampling	48	1	10 M	Sealing Management Plan for LW104 H Hearne	45	1	10 M	
		Old asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing business interruptions/ financial impacts (only very small section at end of LW/mains)	Captured by Mine Survey and enviro PTD mapping Known location of the pipe Monitoring of potential exposure during subsidence Communication with BMA regarding the pipe GRO-300-HMP- Disturbance, Penetration, excavation and rehabilitation, Permit to Disturb system GRO-5861-STD Grosvenor Mine Planning Standard - Identified & on mine plan Not expected to be subsided in LW104 extraction.	2L &R	2	5L		2L &R	2	5L	
Mining under the 132,000 Volt Powerlink line to Townsville	LW104 Subsidence causing damage to the powerlines	If the jacks cannot be installed in time to combat the subsidence, there is a risk of the LW104 start date being delayed and causing production loss	Project team from BCO liaising with Powerlink to gain access to work on the jacks The team has been inducted on site and ready to commence work as soon as Powerlink provides access Routine updates on the progress of the project with the aim of completion by the 30th of January	4M	3	18 S	Communicate the management plan to Grosvenor superintendents and SLT – N Gilbert	4M	3	185	
	132,000 Volt Powerlink	132,000 Volt Powerlink damage to the powerlines	in air leak increased potential of Spontaneous Combustion - Air leakage in into goaf from untreated hole Old asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing business interruptions/ financial impacts (only very small section at end of LW/mains) Mining under the 132,000 Volt Powerlink line to Townsville If the jacks cannot be installed in time to combat the subsidence, there is a risk of the LW104 start date being	Intersection of open borehole resulting in air leak increased potential of Spontaneous Combustion - Air leakage in into goaf from untreated hole Intersection of open borehole resulting in air leak increased potential of Spontaneous Combustion - Air leakage in into goaf from untreated hole Ideatage in into Mine (Annurre in the Ideatage in the Ideatage in the Ideatag	Intersection of open borehole resulting in air leak increased potential of Spontaneous Combustion - Air leakage in into goaf from untreated hole Did asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing business interruptions/ financial impacts (only very small section at end of LW/mains) Mining under the 132,000 Vot Powerlink line to Townsville Intersection of open borehole resulting in air leak increased potential of Spontaneous Combustion - GRO-3389-PRC-Permit to Mine GRO-3389-PR	Intersection of open borehole resulting in air leak increased potential of Spontaneous Combustion - Air leakage in into goaf from untreated hole Did asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing business interruptions if famical impacts (only very small section at end of LW/mains) Did asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing business interruptions if famical impacts (only very small section at end of LW/mains) Did asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing business interruptions if famical impacts (only very small section at end of LW/mains) Did asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing business interruptions if famical impacts (only very small section at end of LW/mains) Did asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing of potential exposure during subsidence Communication with BMA regarding the pipe GRO-300-HMP- Disturbance, Penetration, excavation and rehabilitation, Permit to Disturb system GRO-5861-STD Grosvenor Mine Planning Standard - Identified & on mine plan Not expected to be subsided in LW104 Not e	Intersection of open borehole resulting in air leak increased potential of Spontaneous Combustion - Air leakage in into goaf from untreated hole Spontaneous Combustion - Air leakage in into goaf from untreated hole Spontaneous Combustion - Air leakage in into goaf from untreated hole Spontaneous Combustion - GRC-14-PHMP Spontaneous Com	Intersection of open borehole resulting in air leak increased potential of Spontaneous Combuston. **Air leakage in into goaf from untreated hole ** Old asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing under the 132,000 Volt Powerlink line to Tovnsville ** Mining under the 132,000 Volt Powerlink line to Tovnsville ** Intersection of open borehole resulting in air leak increased potential of Spontaneous or damage to the powerlines are combat the subsidence, there is a sink of the LW104 started she being delayed and causing production loss and service with the aim of completion by the progress of the p	Intersection of open borshole resulting in air lesk increased potential of Spontaneous Combuston. Air leakage in into goaf from untreated hole Old asbestos pipeline (BMA) has been diverted - Potential connections of damage to the pipeline due to subsidence impacts causing business interruptions francal impacts of a causing business interruptions francal impacts of a causing business interruptions francal impacts causing business interruptions francal impacts of a causing business interruptions of a causing business interruptions for facility of a causing business interruptions of a causing business interr	Intersection of open borehole resulting in air lesk increased potential of Spontaneous Combuston. Air leakage in into goaf from untreated hole Old asbeatos pipeline (BMA) has been diverted - Potential commercial of GRO-10-PHMP Spontaneous Combuston (Montoning) - Gas management (Montoning) - Gas managemen	Intersection of open borshole resulting in air leak increased potential of Spontaneous Combustion. Air leakage in into goaf from untreated hole Old asbestos pipeline (BMA) has been diverted - Potential connections or damage to the pipeline due to subsidence impacts causing business interruptions infrancial impacts combustion and management plan for LW manages to the pipeline due to subsidence impacts causing business interruptions infrancial impacts combustion and manages to the proventines are fall of the LW filed start date being plan in the Townsville Milining under the 132,000 VaR Powerlinis line to Townsville Milining under the 10 Towns

ssue Date: Version:		Print: 8/04/2020
0 Date of Issue	: 05/03/2020	Page 60 of 111
)	20 Date of Issue	5757 TT-11

RSH.002.030.0064

Other Workings

No.	ISSUE OR STEP IN OPERATION	ENERGY/HAZARD/ISSUE THAT MAY BE PRESENT	DESCRIBE THE RISK	EXISTING CONTROLS		INITIAL RISK RATING (IRR)				INITIAL RISK RATING (IRR)				ADDITIONAL CONTROLS	RIS	K RAT	TING	Acceptable YES = RRR below 13 NO = RRR above 13 and enter into High Risk
				Mina Diana Cubusitta dan dan artura at	С	L	R		C	L	R	(>13s) & Non-Consensus Items Table						
20	Hole into other workings	Inrush	Inrush into mine workings from adjoining/above workings	 Mine Plans Submitted to department Survey of current mine layout No Working above current block Registered Surveyor 	2M	2	5L	Confirm barrier pillar design between MNM and GRV operations – R Goonawardene	2M	2	5L							

Gas Drainage

Recommendations for the LW104 goaf gas management are based on observations from LW101, LW102 and LW103. A specific objective is to mitigate events of greater than 2.5% CH₄ in the longwall tailgate, further, that the normal operating conditions in the LW return should be less than 2.0% CH₄.

The longwall face goes beneath the Isaac River which prevents drilling of vertical goaf drainage. Additionally, during the initial goaf formation of LW103 tailgate CH4 levels were higher than planned until the goaf holes came online. Measures proposed for LW104 are intended to address these issues specifically in the first 500m of retreat.

1. Isaac River

The Isaac River traverses the longwall from the 11ct in MG104 to 14ct in TG104. This requires additional slant holes to be drilled from areas on surface not effected by the Isaac River. There are 4 slant/ directional wells to be drilled in this section of LW104. With limited space surface room available there will be slant wells drilled from mid panel of LW 104 and goaf effected areas of LW103. All slant wells will be drilled as 17 1/2" to production 13 3/8" casing depth and completed 12 1/4" drilled hole and cased with 9 5/8" perforated casing.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 61 of 111

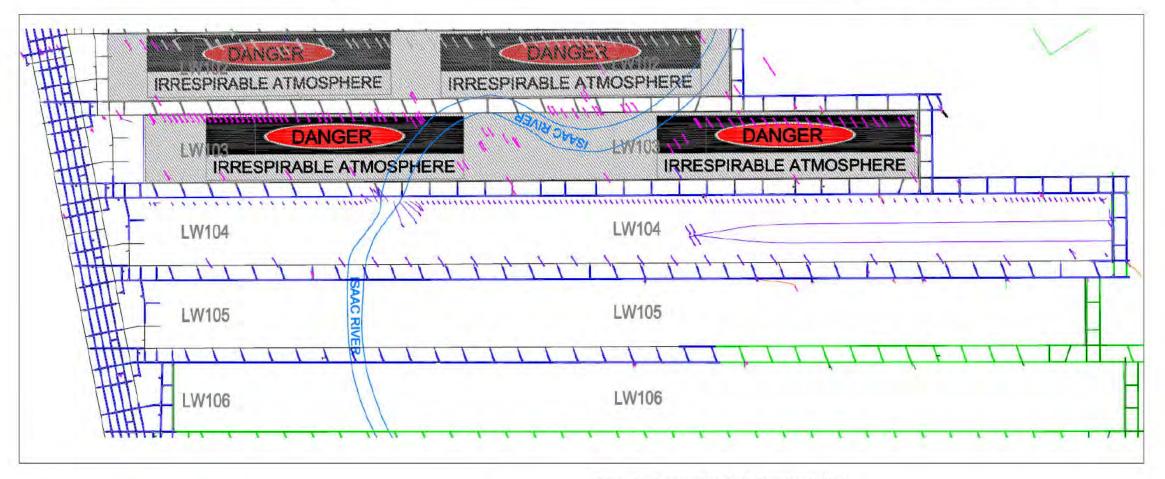


Figure 11 - Proposed goaf hole locations LW104

2. Longwall 104 surface features

The long wall face will start in an area without significate surface feathers, which will not prevent drilling of vertical goaf drainage. Additionally, during the initial goaf formation of LW103 tailgate CH4 levels were higher than planned until the goaf holes came online.

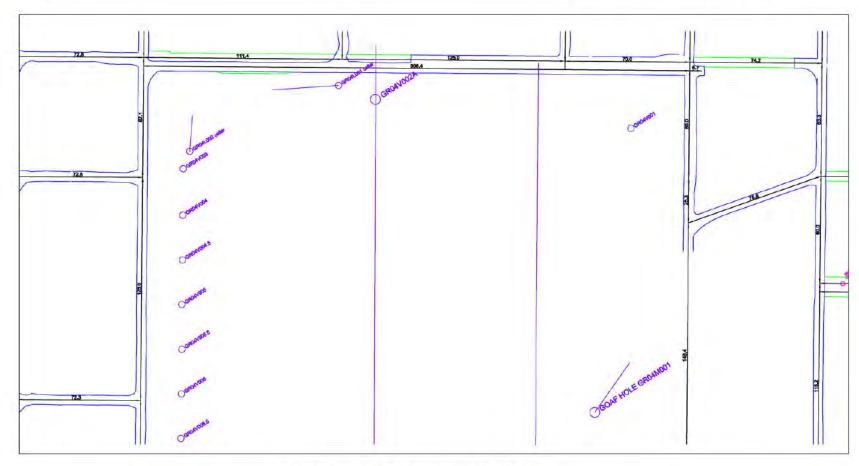
Measures proposed for LW104 that intended to address these issues specifically in the first 500m of retreat. For the Start-up of LW104 the goaf drainage strategy will consist of 4 x 17.5" vertical goaf holes at 5 to 30m above the GM seam to aid in the early goaf drainage with minimal caving profile and 25m hole spacing for the first 500m retreat.

Initial Caving Conditions

TG gas levels during initial LW103 goaf formation exceeded 2% before the first two goaf wells came on stream. The origin of the early gas was considered from the floor and from localised roof fall/bed separation along the face which did not connect with the vertical goaf holes.

GRO4V001 - 5m below P Seam

GRO4V002A - 10m above GM Seam (connect to P seam lateral)


GRO4L001 - 10m Above GM seam

GRO4L002 - 15m Above GM seam

GRO4V003 - 15m Above GM seam

GRO4V004.5 - 20m Above GM seam

GRO-10671-RA-LW104 Secondary	Original Issue Date: 05/03/2020	Version: Date of Issue:	1 05/03/2020	Print: 8/04/2020 Page 62 of 111
Extraction				

GROSVENOR COAL MINE

Figure 12 - Proposed surface horizontal goaf holes

3. Lateral Wells

The goaf holes were drilled at 8 ½" diameter, reamed to 17 ½" diameter then fitted with slotted 9 5/8" casing to the end of hole. Gas production from the three wells was poor – A hole was drilled at varying elevations above the Goonyella Middle seam with good performance when in active goaf of LW103. The four LW104 Lateral wells have been designed, to be drilled in the P seam to capture the gas released with the yielding/unloading of the strata below the P seam. This may allow the post mining gas to be captured prior to being released to the longwall mining area.

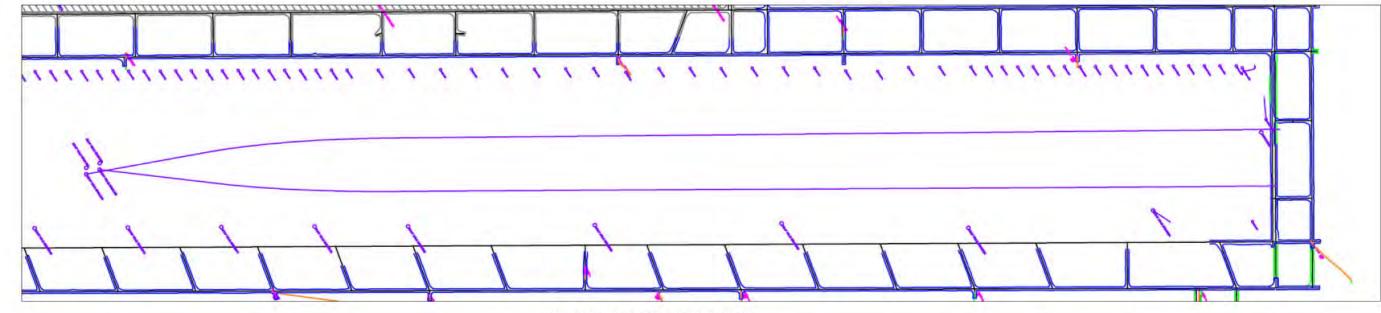


Figure 13 - Proposed LW104 goaf holes

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 63 of 111
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROL	LED AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

RSH.002.030.0067

Pre drainage

- Pre-drainage of the GM-Seam has been conducted from a combination of both SIS (owned by Arrow) and infilling of UIS drilling where required to achieve gas content of <4m³/t for development production and <2m³/t for Longwall production. Gas content of the GM seam is proven to be below 2m³/t outbye of CH1600 (MG104 17c/t) and no additional gas drainage has been implemented for this region.
- Pre-drainage of the P-Seam over LW104 has been conducted from SIS Boreholes drilled from Arrow. UIS drilling of the P-Seam was attempted from MG104 22c/t that resulted in 837m of drill string being stuck in the P-Seam inbye of MG104 22c/t.
- No pre drainage of the GML seam has been conducted for LW104 and is expected to release gas readily due to the GML reservoir size combined with proximity to the working seam up to approximately CH4000-2000 (MG104 20-36c/t)

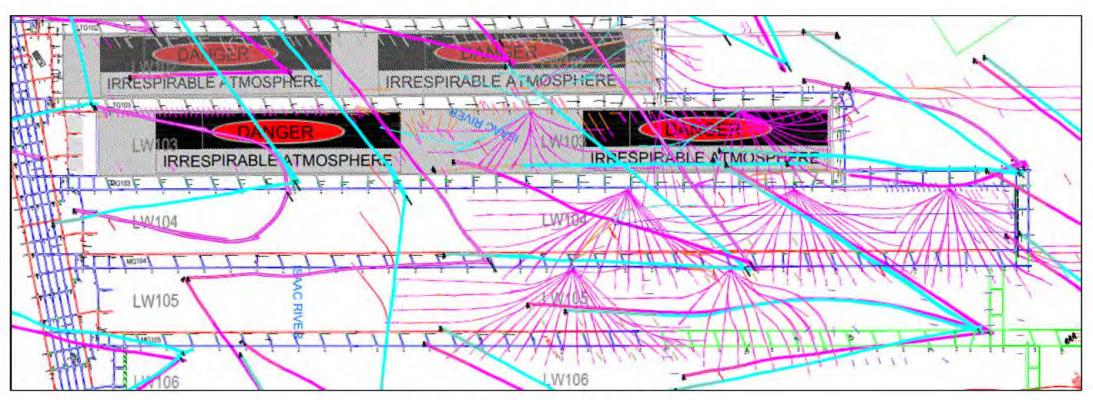


Figure 148 - Existing UIS & SIS Gas Drainage Boreholes

GRO-10671-RA-LW104 Secondary Extraction	Original Issue Date: 05/03/2020	Version: Date of Issue:	1 05/03/2020	Print: 8/04/2020 Page 64 of 111
--	------------------------------------	----------------------------	-----------------	------------------------------------

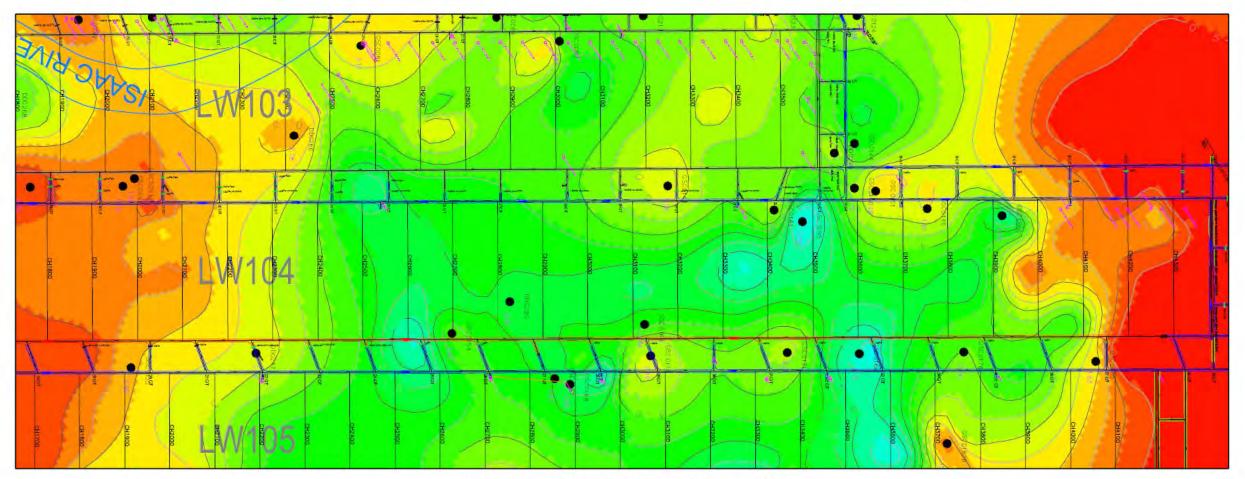
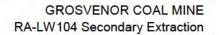



Figure 159 – Estimated GML gas reservoir size (m3 of gas per m2 of area)

of Issue: 05/03/2020	Page 65 of 111
	DEEMED VALID ONLY ON T

Gas content from previous cores taken from 2017 onwards indicates that the P-Seam gas content varies from 4-6m³/t at the commencement of the longwall block. There will be increased goaf emissions until LW104 meets the install roadway of LW103 as there will be gas desorbing from 3 sides, instead of 2. Diagram below for description:

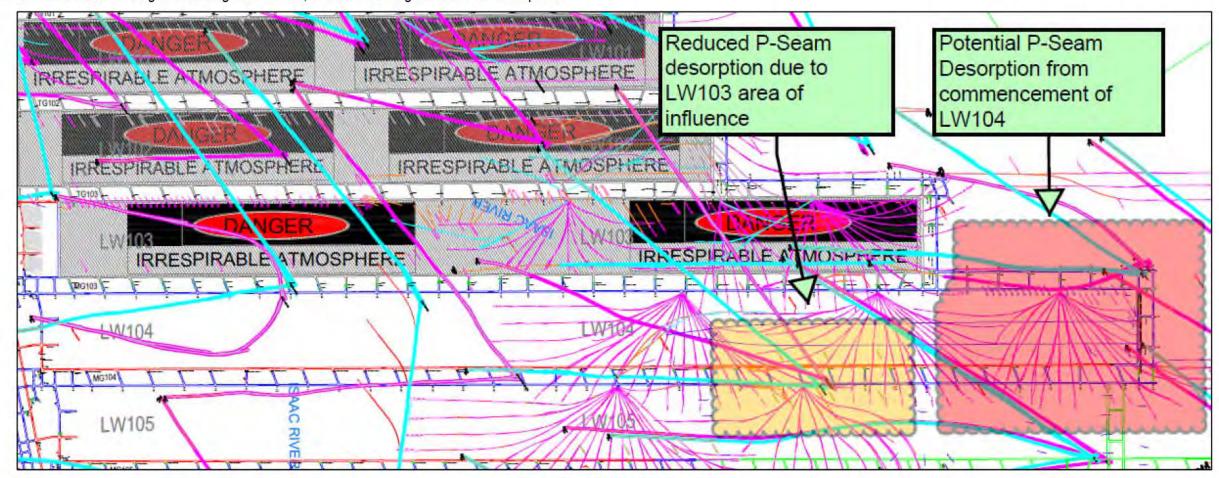
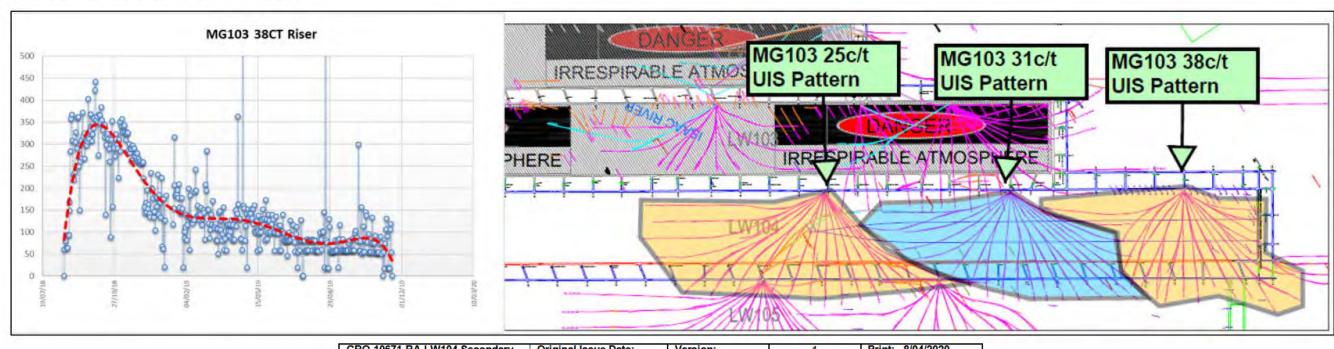
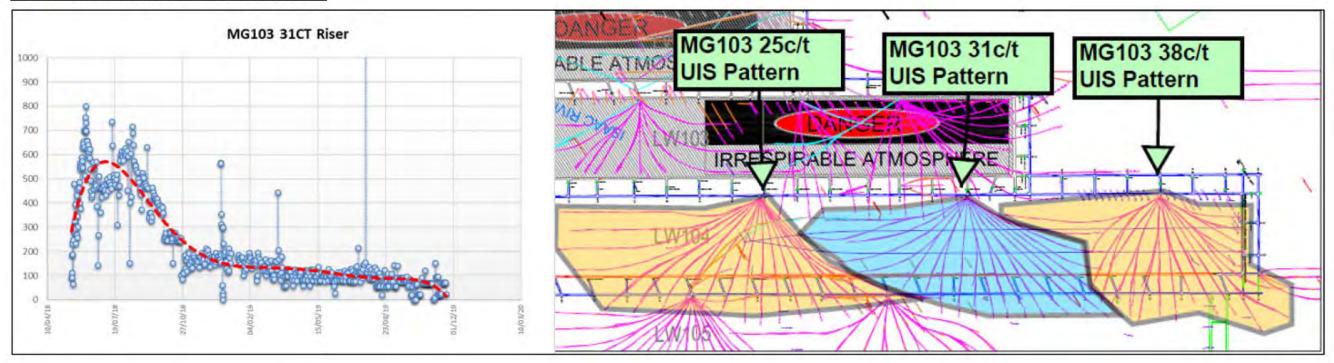
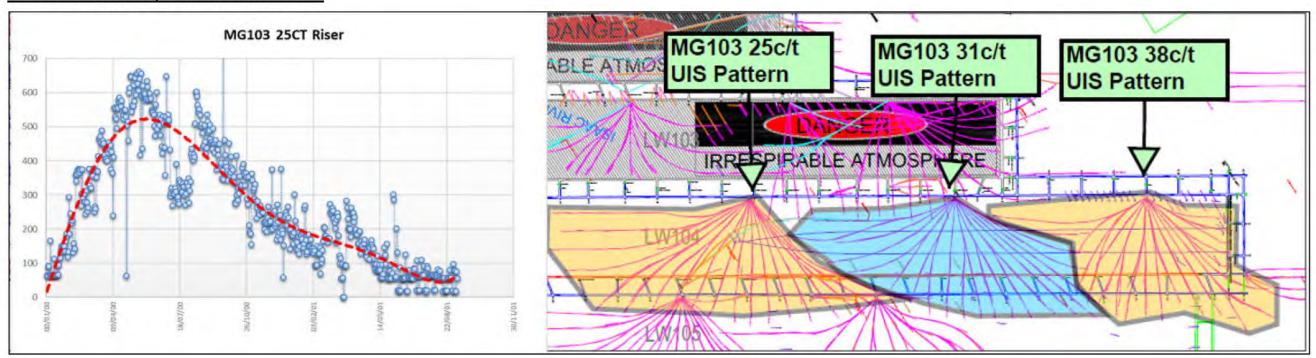



Figure 167 – P-Seam Area of Influence

Total UIS borehole flow performance - MG103 38c/t



GRO-10671-RA-LW104 Secondary Driginal Issue Date: Uersion: 1 Print: 8/04/2020 Page 66 of 111


PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING

Total UIS borehole flow performance - MG103 31c/t

Total UIS borehole flow performance - MG103 25c/t

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 67 of 111
PRINTED COPIES OF THIS DOC	CLIMENT ARE LINCONTRO	LED AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

4. Vertical Goaf Holes

Vertical goaf holes will be drilled on the north and south side of the river on the tailgate side of the longwall where surface conditions allow. Goaf hole spacing of 25-50m should be maintained unless otherwise indicated by flow monitoring results (potential vertical goaf hole interaction with directional goaf hole). Except for the face start line (FSL) hole spacing would be no less than 20- 30 apart, nominally 15-40m from the tailgate rib.

Main gate Verticals are planned at 140m to 350m hole spacing, to mitigate for high gas emission's during high production of the long wall.

The first two vertical holes may be offset from the rib by 25-30m to accommodate reduced bed separation due to cantilever support of the solid. Vertical goaf holes adjacent to LW103 goaf may be reasonably offset 15-35m from the tailgate rib. A main gate goaf hole is possible within 20m of the face start line. This location has worked well in the past for high gas level in the LW mining horizon.

Chainage	TG104 Spacing	TG104 Holes	MG104 Spacing	MG104 Holes	∑ Holes
4500m-3900m	25m	24	300m	2	26
3900m-2900m	50m	20	300m	3	23
2900m-900m	25m	80	150m	13	93
900m-0m	50m	18	300m	3	21
					163

5. Surface Infrastructure

The goaf holes will be fitted with real time flow and composition monitoring to manage tailgate gas levels and purity level being removed from Goaf.

A second connection to the goaf drainage plant by an alternative river crossing for LW102 via TG104 goaf pipeline. This will reduce capacity restrictions due to water make at the existing river low point.

At planned production rates where daily tonnage is consistently greater than 30,000 tonnes then increased goaf capture is sought to improve capture efficiency. This may be achieved by systematic maingate goaf drainage holes (trialling directional lateral holes). These holes would cover the longwall reserves >250m cover, nominally 2000m of retreat.

6. Gas Capture Reticulation System

Gas reticulation will use the existing 630mm buried HDPE pipeline, modelling indicates a peak capacity of 14000 L/s with the vacuum plant operating at 58 kPa and 3 blower units on the south side of the river. This flow rate is excess of the anticipated peak gas emission from the longwall. If higher gas flows arise due to poor gas composition wellhead venturi ejectors may be used.

7. Gas Monitoring

Gas monitoring sensors in the 104 panel include the following:

- Real-time NERZ/ERZ1
- Real-time Atmosphere (oxygen, methane, carbon monoxide, carbon dioxide)
- · Real-time Pressure Differential
- Real-time Velocity
- Tube bundle
- Gas Chromatograph analysis of bag samples
- · ERZ controller inspections with hand held units

Figure 17 presents typical longwall gas monitoring locations and type.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 68 of 111
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROLLE	D AND DEEMED VAL	LID ONLY ON THE	DAY OF PRINTING

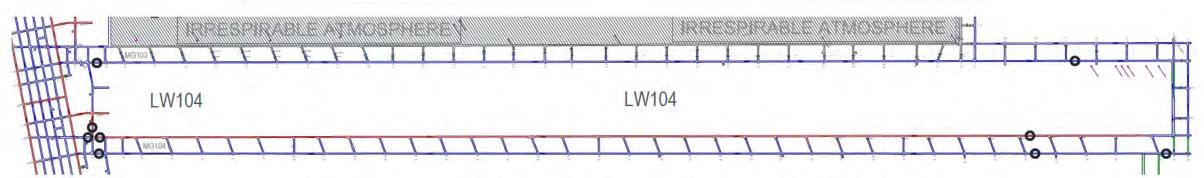


Figure 17 - Typical Longwall Tube Bundle Gas Monitoring Locations - Spread out across the block for goaf monitoring

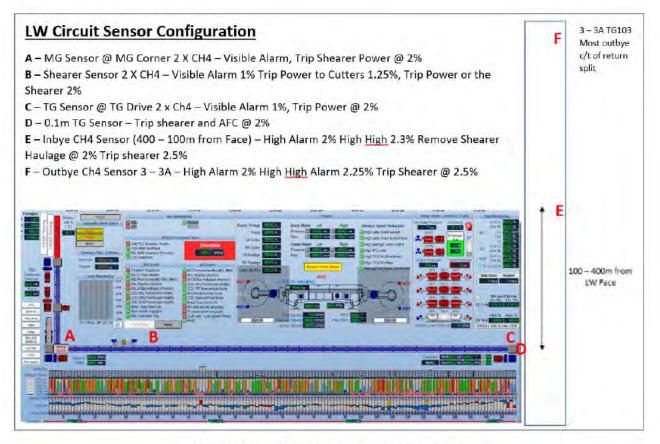


Figure 18: LW Realtime gas Monitoring Layout

GRO-10671-RA-LW104 Secondary Extraction		Version:	1	Print: 8/04/2020 Page 69 of 111
		Date of Issue:	05/03/2020	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 70 of 111
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROLLE	D AND DEEMED VAI	ID ONLY ON THE	DAY OF PRINTING

No.	ISSUE OR STEP IN OPERATION	ENERGY/HAZARD/ISSUE THAT MAY BE PRESENT	DESCRIBE THE RISK	EXISTING CONTROLS		TIAL F		ADDITIONAL CONTROLS		K RA (RRF	TING	Acceptable YES = RRR below 13 NO = RRR above 13 and enter into High Risk
21		Gas liberation into face area exceeding operational and legal requirements [CH4% >2.5%]	Gas concentrations prevent operation of face equipment	 Sufficient vent quantity across face Goaf Management Procedure – MG Goaf Drainage Tube bundle monitoring/ sensors Face monitoring - Gate end, Shearer monitors, NERZ/ERZ boundaries Maingate Wing Gas guard sensors installed on face to trip power at 2% Gas content and specific emissions modelled ERZ Controllers inspections Gas pre-drainage & Goaf drainage Gas sampling cores (known gas contents) Permit to Mine Longwall Standards (TG roadway and alignment) GRO-750-TARP – General Body Contaminants GRO-10563-TARP-LW Return Methane General Body Contaminants TG Shearer speed sensor in place (Refer to longwall standard) Control of adjacent goaf emission via Adjacent Goaf drainage Mine Production schedule and Plan Ventilation standards Goaf drainage strategy MG103 EPS as intake Gas monitoring maintenance regime Additional goaf hole skids Plan to cut at reduced rate (e.g. uni-di, reduced shearer speeds) through higher gas hazard zones as required 	C 2L &R	L 4	R 12 M	Communicate the status of the project and the timelines to increased drainage capacity to 17,000l/s – C Englebrecht Ensure that the additional infrastructure is monitored through Citect – C Englebrecht Confirm and communicate shearer speed sensor trigger points and limits for LW104 kick off to CROs – J Agustin Finalise RA for LW104 Goaf drainage strategy/review – C Englebrecht	C 2L &R	4	R 12 M	(>13s) & Non-Consensus Items Table
22		Gas liberation exceeding operational and legal requirements [CH4 >1%]	Gas concentrations prevent operation of diesel equipment in TG roadway causing production loss	Standard vent quantity (~60m3/s) Tube bundle monitoring/TG sensors/ realtime monitoring Methanometers fitted to vehicle Gas drainage Goaf drainage ERZ Controller Inspections Maintenance scheduling Longwall ventilation strategy TG forcing fan for TG entry/maintenance activities Plan to have all TG works completed prior to commencing LW104	3М	3	13S					

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 71 of 111

23	Goaf collapse / caving expels large volumes of gas creating a general body exceeding operational and legal requirements [CH4% >2.5%]	Gas concentrations prevent operation of face equipment	 Known geology and roof zones Monitoring of subsidence profile Ventilation standards Goaf drainage - MG Goaf drainage First goafing management plan Gate end monitoring with interlocking Ventilation strategy (use of brattice wing/MG brattice curtain) Face Mapping - ERZ Controller and Geologist /geotechnical engineer. GRO-750-TARP-General Body Contaminants TG roadway secondary support incorporates learnings from TG102 	2L &R	4	12 M	NB – separate risk assessment including wind blast for first goaf formation				
24	Changes in ERZ-NERZ Boundaries	Non-Hazardous Area Certified electrical equipment operating in the ERZ1 zone	 Gas monitoring and tripping interlocking Gas sensors with NERZ/ ERZ boundary relocation process and NERZ relocation RA LW Pre-start check list /signoff GRO-27-HMP-Location of Electrical Equipment Underground Ventilation/Electrical compliance audits Boundary move check list/audit ensures that all non-Approved electrical equipment is decommissioned and removed before and area is rezoned Flame proof tripper drives planned for LW 104 UPEE Ventilation change permit Critical control inspections 	2L &R	3	8M					
25	Caving / subsidence closing off gas drainage wells	Loss of gas drainage capability causing production loss	Hazard plan LW104 GRO-8804-PMT Permit to Drill (UIS) Borehole flow monitoring GRO-5861-STD Grosvenor Mine Planning Standard - Borehole design – spacing & casing Standard of fitting the perforated casing to goaf hole above working section GRO-7481-PLAN-Subsidence Management Plan GRO-3602-CHK – Borehole Intersection Notice Increased goaf hole density from prevous block Goaf hole mandatory dipping program History of no failed holes in LW103	2M	3	8M					
26	Inadequate gas post-drainage (goaf), resulting in >2.5% TG CH4%, and production delays	Gas concentrations prevent operation of face equipment	Sufficient vent quantity across face Goaf Management Procedure – MG Goaf Drainage Tube bundle monitoring/ sensors Face monitoring - Gate end, Shearer monitors, NERZ/ERZ boundaries Maingate Wing	2M	4	12 M	Finalise RA for LW104 Goaf drainage strategy/review – C Englebrecht	2M	4	12 M	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 72 of 111

			 Gas guard sensors installed on face to trip power at 2% Gas content and specific emissions modelled ERZ Controllers inspections Gas pre-drainage & Goaf drainage Gas sampling cores (known gas contents) Permit to Mine Longwall Standards (TG roadway and alignment) GRO-750-TARP – General Body Contaminants GRO-10563-TARP-LW Return Methane General Body Contaminants TG Shearer speed sensor in place (Refer to longwall standard) Control of adjacent goaf emission via Adjacent Goaf drainage Mine Production schedule and Plan Ventilation standards Goaf drainage strategy MG103 EPS as intake Gas monitoring maintenance regime Additional goaf hole skids Plan to cut at reduced rate (e.g. uni-di, reduced shearer speeds) through higher gas hazard zones as required 						
27	Floor gas emissions risk due to thin interburden resulting in production delays	Gas concentrations prevent operation of face equipment	Pre-drainage of P Seam and GM seam Post drainage of P Seam and Gm seam Gas monitoring Ventilation management plans Gas detectors ERZ Controllers inspections GRO-750-TARP-General Body Contaminants	2M	4	12 M	Develop a gas predictive model for a longwall situation taking to account the effects of the abutment loading – S Giese		
28	Floor Gas zone not defined accurately	Not defining the floor gas zone can result in production delays section of the LW104 which is not planned	Development Floor gas zone have been defined which has been used as a guide Geological modelling	2M	4	12 M	Implement piezo monitoring from the MG pillar to assist with identifying the source of floor gas – H Hearne		
29	Increased gas ingress due to propagation through geological structures	Faults in the longwall block may promote fracturing to both lower and upper seams increasing gas ingress	 Pre-drainage of P Seam and GM seam Post drainage of P Seam and Gm seam Gas monitoring Ventilation management plans Gas detectors ERZ Controllers inspections GRO-750-TARP-General Body Contaminants Business plan for next year has the LW104 cutting at a reduced rate (e.g. uni-di, reduced shearer speed) through this section PTM process identifies structures Face mapping Geological modelling 	2M	4	12 M			

GRO-10671-RA-LW104 Secondary Extraction Original Issue Date: Version: 1 Print: 8/04/2020 Page 73 of 111

PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING

			3D seismic								
30	Ineffective ventilation and gas monitoring	Non-Hazard Area Certified electrical equipment operating in the ERZ1 zone	Boundary Zones Vent Change Authority Gas Sensor relocation authority UPEE procedure Boundary move check list/audit ensures that all non-approved electrical equipment is decommissioned and removed before and area is rezoned. Face ventilation plan and gas sensor positions defines ERZ boundaries and zones Boundary moves driven from sequence control Permit to Energise Form Critical control inspections	2M	3	8M					
31	Barometric drop results in migration of toxic / irrespirable atmosphere into mine workings	Exposure to Toxic / Irrespirable atmospheres causing personal injury	Ventilation standards Barricading/ restricted access ERZC Inspections Signage (mine plan "Do Not Enter" signage) Gas monitoring systems Barometric monitoring Temporary VCD's Rated seal designs Goaf seal design checklist and sign off (QA/QC) Adjacent goaf management control Weather event TARP GRO-750-TARP-General Body Contaminants	4\$	3	185	Produce SWI for managing C heading roadway outbye the 103 EPS. Include hard controls for stonedust, gas monitoring, barricading, access, etc.) – H Hearne Confirm a hard barriers separating the C Heading roadway outbye the 103 EPS is in place prior to commencing LW104 operation – H Hearne	48	1	10 M	
32	Loss of vacuum to goaf plant	Gas concentrations prevent operation of face equipment	Venturi ejector operation capabilities at bore holes using mobile compressors Gas Management TARPs Gas monitoring and alarms 24/7 Seam Gas Coverage (Pager linked to alarms)	2M	2	5L					
33	Goaf collapse / caving expels large volumes of gas creating oxygen deficient atmosphere	Exposure to oxygen deficient atmospheres	CABA & self-rescuer (as per escape strategy for LW103) LW Operational Standards ERZ controller inspections Gas monitoring First goafing management plan GRO-750-TARP-General Body Contaminants Ventilation system	28	2	5L					
34	Increased CH4 in TG drive/shearer during start-up due to low (velocity) ventilation until first Goaf formation	Gas concentrations prevent operation of face equipment	Brattice curtains to reduce cross- sectional area and increase velocities Gas detectors ERZ Controllers inspections GRO-750-TARP-General Body Contaminants SIS and UIS pre-drainage Ventilation standards	28	2	5L.	Complete a First Goaf risk assessment for LW104 – R Goonawardene				

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 74 of 111

			Pillar stability calculations Maingate wing					
35	Progressive sealing required during extraction	Exposure to Toxic / Irrespirable atmospheres due to sealing installation not in place Failure to build a seal in time	Ventilation standards ERZC Inspections Barricading/ restricted access Portable gas detectors Seal standard defines build location to reduce the stub length and standard for ventilating goaf seal stubs Permit to work Permit to mine	28	2	5L		

Known Geology

1. Seam Characteristics

The geology for LW104 is similar to LW101 through LW103. The below table summarises the main seam characteristics for LW104;

Characteristics;	0CH	500CH	1000CH	1500CH	2000CH	2500CH	3000CH	3500CH	4000CH
Seam Thickness (m)	5.2	5.0	4.6	4.6	4.6	5.6	5.6	5.6	5.7
Depth of Cover (m)	205m	242m	265m	311m	350m	378m	390m	390m	390m
Seam Grade	1:13	1:13	1:13	1:13	1:16	1:100	1:100	1:100	1:100
GML Interburden Thickness	9.0m	9.0m	9.0m	7.5m	5.5m	4.0m	2.0m	0.5m	2.0m

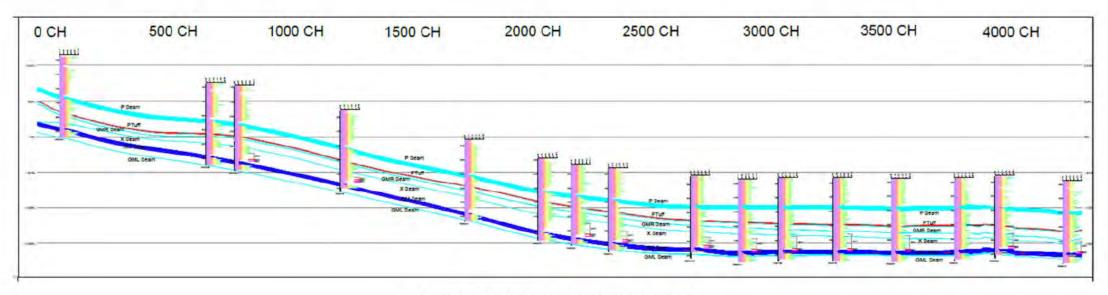


Figure 19 - LW104 showing exaggerated seam grade

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020 Date of Issue:		05/03/2020	Page 75 of 111
PRINTED COPIES OF THIS DOO	CUMENT ARE UNCONTROL	LLED AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

Figure 20 - LW104 showing GML interburden thickness

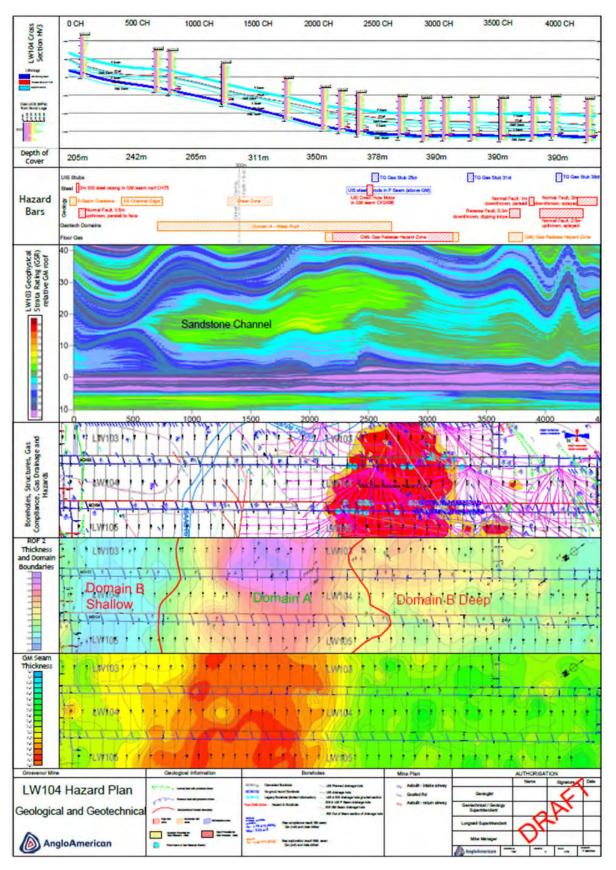


Figure 21 - LW104 Hazard plan

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 77 of 111
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROLL	ED AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

Cut heights have initially been planned to maintain a 400mm coal beam, thickening to 600mm beam on the outbye end, however specific cut heights may be subject to review pending observed conditions during mining of LW104.

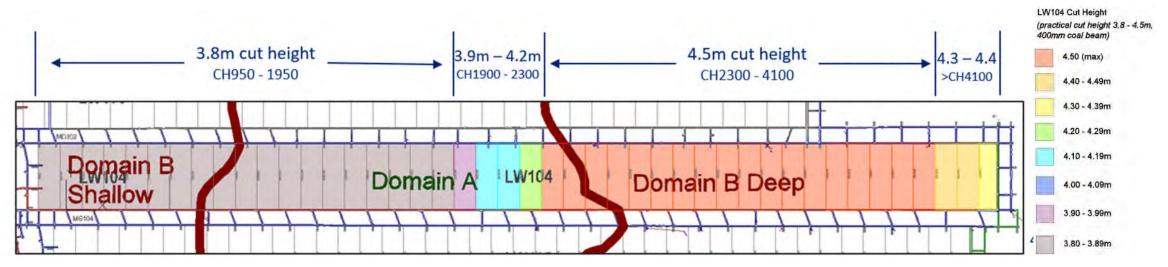


Figure 22 – LW104 Proposed Cut Heights

2. GM Seam features

There are a number of faults that will be intersected during LW104 retreat, as summarised below.

MG Chainage	TG Chainage	Throw	Comments
N/A (FL104)	4243	2.0m	Normal, tight
4222	3919	1.9m	Normal, associated shears
N/A (doesn't propagate to MG)	3840	1.0m	Normal
3680	N/A (doesn't propagate to TG)	0.3m	Re-activated reverse
1510	1690	N/A	Shear zone
100	110	0.5m	Normal, affected LW102 & LW103

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 78 of 111		
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING						

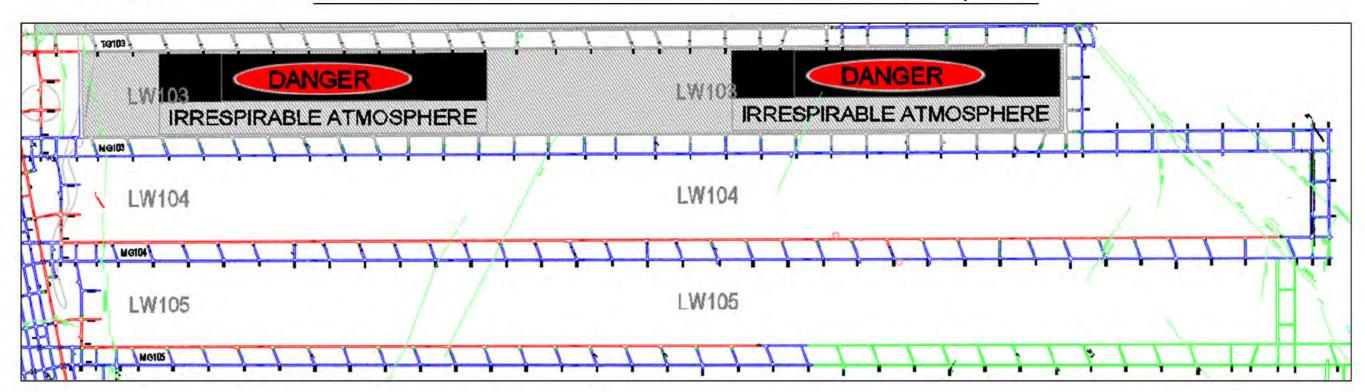


Figure 23 - LW104 Structures

1. Drilling Artefacts

The following drilling artefacts have been confirmed within the LW104 boundary:

- CH 3000m to 2300m: UIS hole, steel in P Seam to 837m hole length
- CH 2498m: Downhole motor within GM seam
- CH 75m: Steel casing in hole GM07RL (RL indicates above GM seam, however arrow data logs indicates it is within GM seam)

Geotechnical

1. Stress Environment

The depth of cover for LW103 ranges from 390m at installs to 205 at takeoff. In the figure below the horizontal stress map for Grosvenor mine is illustrated in detail. This shows clearly that for LW104 panel the principal horizontal stress is generally orientated in a NNE/SSW to NE/SW direction. This will lead to minimal horizontal stress concentrations in the gates during longwall retreat which is favourable for a weak roof environment like Grosvenor, however the cut throughs will experience a stress concentration as the longwall approaches. Total stress magnitude is expected to vary as a function of the rock mass (modulus), depth and structural setting, with a major stress ratio of 1.5:1 not an unreasonable assumption to generalise.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 79 of 111

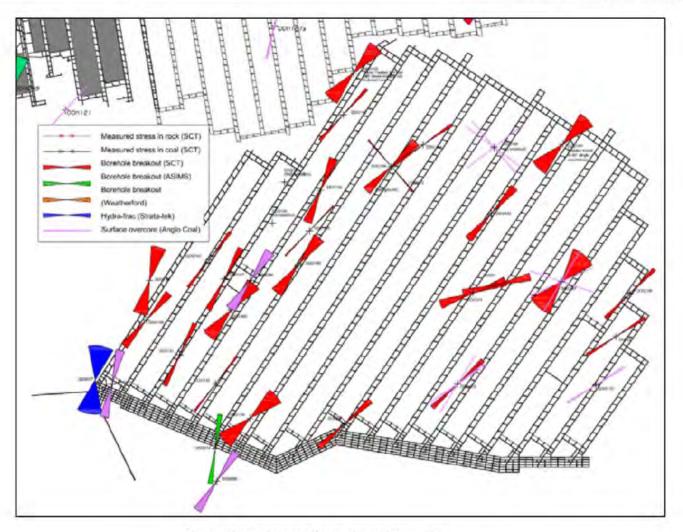


Figure 24 - Grosvenor Mine Horizontal Stress Map

2. Rock Mass Information

a. Geotechnical Domains

Longwall mining will occur through three main geotechnical domains as follows:

- . Domain B deep, located from the install road to approximately MG 23 CT
- Domain A (deteriorated zone), located from 23 to MG 11 CT
- . Domain B shallow, located from 11 CT to take-off

b. Roof Units

Grosvenor has three distinct geomechanical units. Unit 1 is determined as the coal thickness immediately above the development cut roof. Unit 2 is the weak typically carbonaceous and fissile shaly material overlaying the coal seam (above Unit 1). This is regarded as a transitional material between the coal seam and the sandstone channels above. Unit 3 is the overlaying sandstone/siltstone sequence. This unit is typically 10-25m thick. Contacts between units 1-3 are almost always weak or sharp resulting in a weak contact deduction, which is important particularly for lower strength material when calculating CMRR. The geophysical logs (density, sonic derived UCS and gamma) for borehole DDG201 are shown below, including the roof units.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 80 of 111

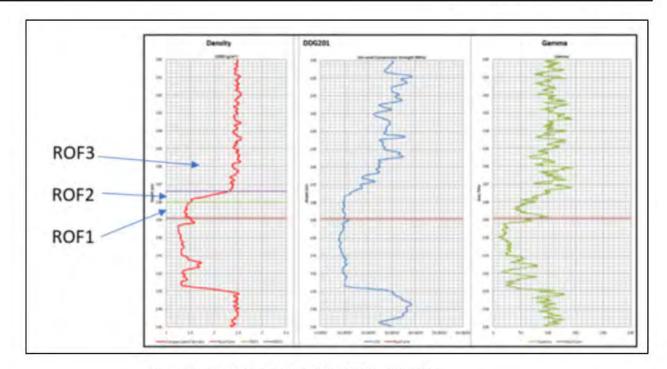


Figure 25 - Geophysical Logs and Roof Units – DDG201

These geomechanical units have been used to refine the geotechnical domain boundaries, to ensure that appropriate hazards are identified and that secondary support strategies are implemented to control the expected conditions. In the following plot, the distribution of roof units as a cumulative thickness can be seen for MG104.

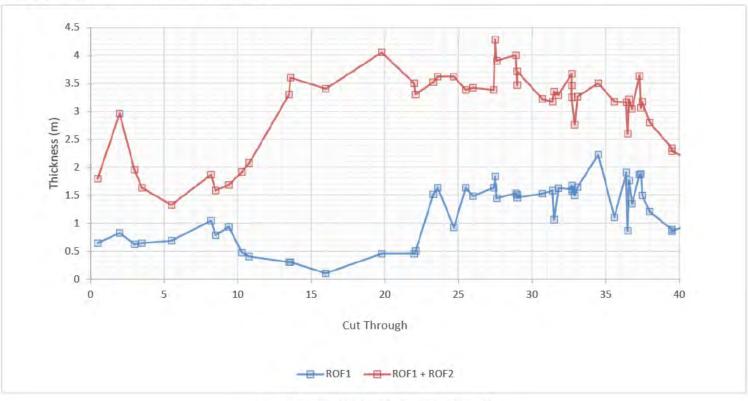


Figure 26 - Roof Unit Thickness (m) MG104

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 81 of 111		
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING						

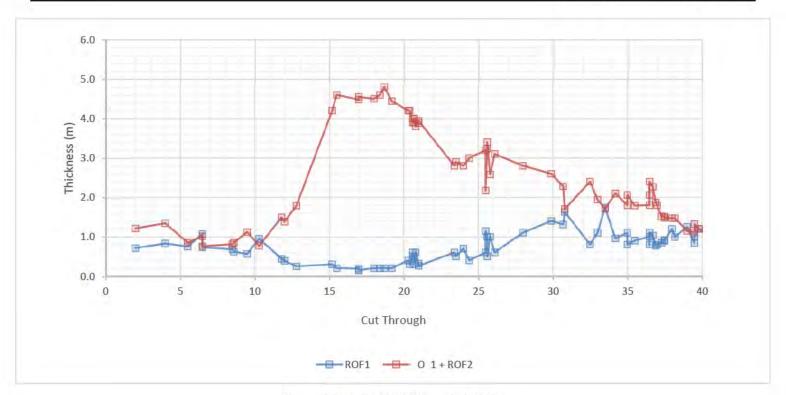


Figure 27 - Roof Unit Thickness (m) TG104

a. Uniaxial Compressive Strength (UCS)

Although not showing a large variance it is still useful to look at the uniaxial compressive strength of the immediate roof at Grosvenor. Calculating the median over the units shows relatively consistent ROF1 at 9-11MPa, larger variation for ROF2 from 10-15MPa, and steadily increasing ROF3 UCS inbye of 10ct to +30MPa (Domain B Deep). It should be noted that the sonic derived UCS formula for rocks at the lower end of the strength spectrum (ROF1 and ROF2) should be taken with caution, and used as a guide only. Laboratory values should be used for design purposes where possible.

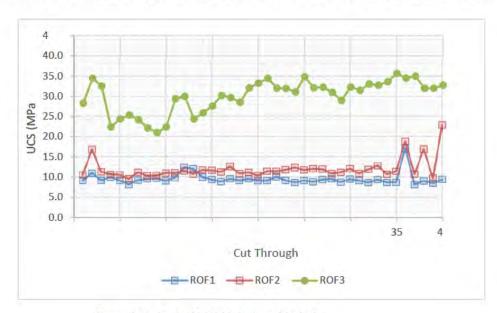


Figure 28 - Sonic UCS (MPa) along MG104

b. Coal Mine Roof Rating (CMRR)

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 82 of 111

Historically the coal mine roof rating (CMRR) has been difficult to calculate for Grosvenor due to a lack of diametral point load test data (any material resembling coal was taken for either gas sampling or coal quality testing) in the first 3-5m of roof above the planned 3.9m cut horizon. Fortunately, a recent study by Colwell (2018) for LW103 maingate/LW104 tailgate secondary support has given more credible estimates by pooling the available data set by unit type for 22 boreholes along the length of the gateroad. Using this method gives a mean CMRR of 28.6 for 104 TG with a range of 25.1 to 33.7. This CMRR is classed as weak to very weak, with a 25 the lowest possible score. This same method was then replicated in MG104 giving near identical values and a similar range validating it as an effective means of calculating the CMRR at Grosvenor mine. Note that these values are significantly lower than those calculated previously at Grosvenor and go some way to explain the difficulties encountered utilising empirical based design methods in the early days at Grosvenor.

c. Geophysical Strata Rating (GSR)

The third rock mass rating system evaluated for LW104 panel is the geophysical strata rating (GSR). The GSR estimates rock mass competency by evaluating downhole geophysical logs (Medhurst and Hatherly, 2006). In addition to being a rock mass rating system, this method also forms a powerful visualisation tool as shown in the figure below, as it estimates rock mass competency over the entire length of the borehole. It is for this purpose the GSR is used to evaluate LW104 panel. In terms of the cross section below, ROF1 and ROF2 form the purple and pink colours immediately above the 0 mark on the Y-axis. Note that they are often indiscernible with each other using GSR hence the importance of using the roof unit system for demarcating them. What is more obvious though is the change in ROF3 along the length of the panel, with increasing GSR to the right of the screen as a channel sandstone sits above the immediate roof from ~800CH inbye. It was when retreating outbye under the edge of this channel transitioning from Domain A to Domain B shallow where the most difficult conditions were encountered across the face in terms of cavity management and horizon control. Based on the observed conditions in LW102 & to an extent in LW103 panel it can be assumed that ground conditions will again be difficult to manage from ~500-800CH again in LW104 panel due to the sandstone channel and associated edge effects (fracturing, bedding plane shear, differential compaction, stress change etc.). Maintaining operational control by closely monitoring the interaction between the strata and roof supports (shield advance sequence, shearer speed and distance from lead drum to advancing shield) will be critical to maintaining roof stability in this zone.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 83 of 111		
PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING						

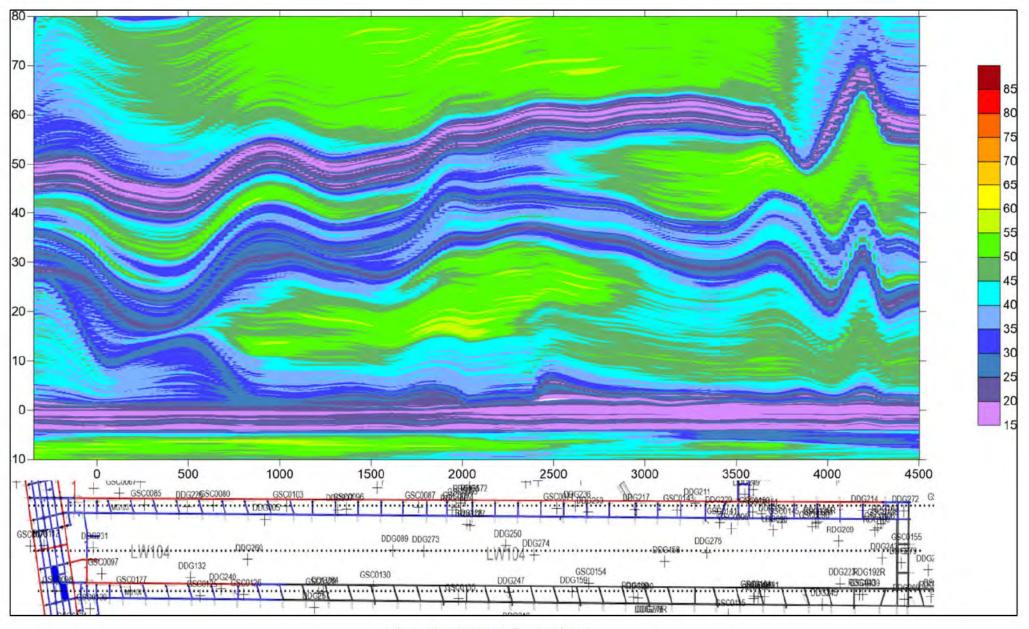


Figure 29 – LW104 Median GSR (80m)

Γ	GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020		
	Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 84 of 111		
Г	PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING						

3. Pillar Stability

No changes to the original gateroad pillar design by Mills (2013) have been made for LW104 panel. The chain pillars at Grosvenor Mine will not pose a pillar stability issue with the current geometry and factors of safety. The specifications for both maingate and tailgate are shown below using the UNSW formula.

Table 1 - LW103 Gateroad Pillar Factor of Safety

103 PILLAR SYSTEM	Maximum Depth (m)	Pillar Width (m)	Pillar Length (m)	Pillar height (m)	Factor of Safety (FoS) (Single Abutment Loading)	Factor of Safety (FoS) (Double abutment Loading)
Tailgate (under double abutment)	390	71	84	3.8	3.1	2.0
Maingate	390	76	74	3.8	3.3	N/A
Face/Bleeder Rd	390	59	70	3.8	1.8	N/A

4. Support Design

The secondary support design has been completed and peer reviewed for both TG104 and MG104, incorporating all experiences gained from LW101 through LW103 retreat. The maingate secondary support is similar to what has been installed in previous panels, with the exception of reduced overall density in Domain B Deep, which in LW103 was shown to experience significant hangups, attributed to the overall support installed.

Table 2 – LW104 Maingate Secondary Support Summary

	_	, , ,	,
Section	Location	Roadway	Cable Density
1	3 to 11	HDG	2/m
'	3 10 11	INT	3.5/m
2	11 to 23	HDG	2.5/m
	11 10 23	INT	4.0/m
3	23 to 27	HDG	2.3/m
			3.5/m
4	27 to 36	HDG	1.8/m
4	27 10 30	INT	3.0/m
5	36 to 29	HDG	1.7/m
		INT	3.0/m

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020	
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 85 of 111	
PRINTED COPIES OF THIS DOCUMENT ARE LINCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING					

For the tailgate, the largely improved support design that was implemented for LW103 will be replicated. This primarily involved using cable trusses through the weak geotechnical domain A and closing up the can spacing through the same area to 3.0m centres. Note that the other main change to the TG support strategy is the installation of additional rib support in the blockside rib at cover depths greater than 350m. This is to assist in maintaining rib integrity on the blockside corner, the lack of which was shown in LW103 to be a key contributor to a number of cavity events that occurred.

Table 3 – LW104 Tailgate Secondary Support Summary

Section	Location	Roadway	Cable Density	Standing support Density
1	2-11ct	HDG	2.5/m	1/4m
,		INT	3.5/m	2/4m
2	Inbye 11-24ct	HDG	3.0/m	1/3m
	Z mayo 11 Ziot	INT	5.0/m	2/3m
3	Inbye 24 to 31 ct	HDG	2.5/m	1/4m
		INT	3.5/m	2/4m
4	Inbye 31 to 35 ct	HDG	4.0/m	1/3m
7	(stress notch)	INT	5.25/m	2/3m
5	Inbye 35 to 41 ct	HDG	2.5/m	1/4m
		INT	3.5/m	2/4m

5. Pre Consolidation

During retreat of 103 panel pre-consolidation was conducted in the gateroads using polymeric resins. This was largely successful in preventing propagation of deterioration along the face and into the gateroads on several occasions. A program of pre-consolidation in the gateroads will again be undertaken as a matter of course during Permit to Mine pre-inspections for LW103 panel, with a full inspection of both gates already conducted and prioritised list developed in SMA 2019_068.

6. Longwall Bolt up and Salvage

Both LW102 and LW103 experienced challenging conditions leading into the final take-off position (note LW103 at CH80m at the time of this WRAC), which a varied geotechnical sub-domain is being experienced. A significant increase in the density of mapped structure on each face map was noted from approximately Ch400m outbye to CH0m, with cavities forming more readily than they would in inbye areas. This issue is compounded by the presence of structures and the X-Seam (small rider seam) coalescing zone, which significant cavities requiring extensive consolidation are experienced. Extrapolating these structures out to LW104 take off (see below figure), this area is not anticipated to be affected by any significant structures, however the X-Seam coalescing zone is potentially present around the take-off location.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 86 of 111
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROLLE	D AND DEEMED VAI	LID ONLY ON THE	DAY OF PRINTING

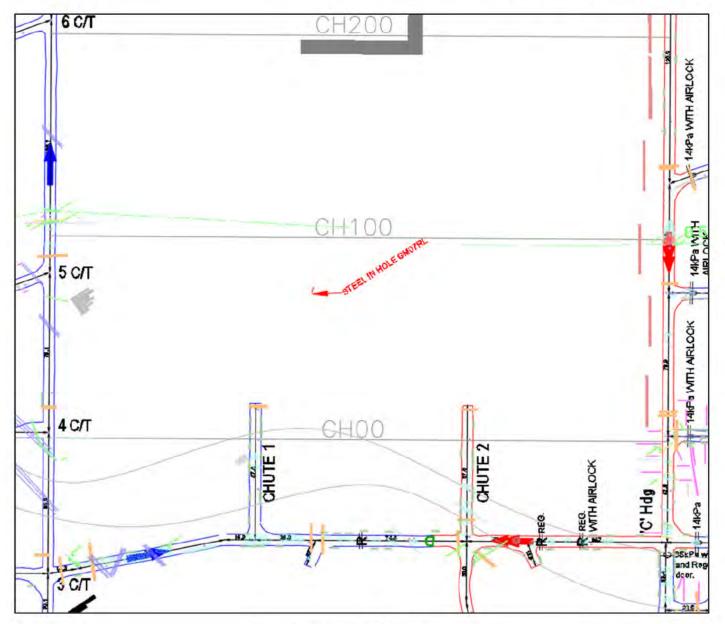


Figure 30 – LW104 Take-Off Structures

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 87 of 111

No.	ISSUE OR STEP IN	ENERGY/HAZARD/ISSUE	DESCRIBE THE RISK	EXISTING CONTROLS		TIAL F		ADDITIONAL CONTROLS		K RA	TING	Acceptable YES = RRR below 13 NO = RRR above 13 and
	OPERATION	THAT MAY BE PRESENT			С	L	R		С	(RRR	R	enter into High Risk (>13s) & Non-Consensus Items Table
36			Accessing the LW face for recovery purposes resulting in a personal injury due to poor strata conditions Poor face stability causing slabbing and injuring person working on face side of AFC during face recovery	 No-Go/restricted zones Cut height management LW Standards –GRO-4801 and 5372 GRO-77-SOP-Underground Workplace Inspections GRO-42-HMP-Mine Inspections System Face sprags Face side access bolting plan Improved access over AFC (step every 5 shields) Procedure for Entering AFC for maintenance of any face-side of AFC equipment, including remote isolation and face support/barring down and stabilisation ERZ inspections 	4\$	2	145	Review procedure for installing standpipes / lances for face recovery on a face height greater than 4.2m – S Giese	45	2	14\$	
37	Known Geology	Loading, failure and caving of over-laying strata	Increased propensity for weighting causing production loss	 Equipment design (Longwall capacity) Planned Maintenance strategies (hydraulic health) Mine planning strategies (timing and location for stoppages) Cutting horizon plan LW Standards –GRO-4801, 5372 Hazard Plan LW103 Geological model Face Mapping & Inspections LVA Monitoring and LVA training of LW personnel GRO – 5833 -TARP- Strata Control Longwall Face Operations GRO – 5609 – TARP –Longwall Creep and Face Alignment GRO – 5454 – STD –Longwall periodic weighting and cavity management standard MST considered for the longwall take into consideration maintenance during loading and cavity events Shot firing capability, magazine and appointed competent people for shotfiring activities GRO-3385-PRO-Permit to Mine GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection GRO-5861-STD Grosvenor mine planning standard - Mine design GRO-42-HMP – Mine Inspection system 	3M	2	9M					

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 88 of 111

38			Converging event causing personnel injury	 Equipment design (Longwall capacity) Planned Maintenance strategies (hydraulic health) Mine planning strategies (timing and location for stoppages) GRO-5861-STD Grosvenor mine planning standard - Mine design Cutting horizon LW Standards -GRO-4801, 5372 Hazard Plan LW103 Geological model Face Mapping & Inspections GRO-42-HMP - Mine Inspection system, GRO-77-SOP - Underground Workplace Inspections system - ERZ controller inspection LVA Monitoring and training of LW personnel 	3S	1	6M					
39	Known Geology	Extraction adjacent to edges of sandstone channels	Failure of roof on LW face causing production loss	 Equipment design (Longwall capacity) Planned Maintenance strategies (hydraulic health) Mine planning strategies (timing and location for stoppages) GRO-5861-STD Grosvenor mine planning standard - Mine design Cutting horizon LW Standards –GRO-4801, 5372 Hazard Plan LW103 Geological model Face Mapping & Inspections GRO-42-HMP – Mine Inspection system, GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection LVA Monitoring and training of LW personnel Shot firing capability GRO – 5609 – TARP –Longwall Creep and Face Alignment GRO – 5833 -TARP- Strata Control Longwall GRO – 5454 – STD –Longwall periodic weighting and cavity management standard 	4M	3	185	Review options for the last 200m of LW104 retreat focusing on roof management, considering the learnings from LW101 and LW102, LW103 including bolt up. – S Giese				
40	Known Geology	Extraction adjacent to edges of sandstone channels	Failure of roof adjacent to Gate ends causing production loss	Equipment design (Longwall capacity and upgrade of 149 flushing shield) Planned Maintenance strategies (hydraulic health) Mine planning strategies (timing and location for stoppages) GRO-5861-STD Grosvenor mine planning standard - Mine design Cutting horizon LW Standards –GRO-4801, 5372 Hazard Plan LW103 Geological model	3M	4	178	Review business case for the cut profile for development versus cut horizon for the longwall in the MG and TG roadways – R Nowell	3M	4	175	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 89 of 111

				 Face Mapping & Inspections GRO-42-HMP - Mine Inspection system, GRO-77-SOP - Underground Workplace Inspections system - ERZ controller inspection LVA Monitoring and training of LW personnel GRO - 5609 - TARP -Longwall Creep and Face Alignment GRO - 5833 -TARP- Strata Control Longwall GRO - 5454 - STD -Longwall periodic weighting and cavity management standard 								
41	Known Geology	Gravity	Strata failure at gate-ends	Rib support Horizon control at gate end cuts Sprags on TG shields NO GO Zones Roof monitoring Slothing plates on shearer LW Standards –GRO-4801and 5372 Ability to install remedial support gate-end corner GRO-42-HMP – Mine Inspection system, GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection TARP LW Strata Control Geological face mapping Pre-consoldiation for gate ends	3М	2	9M	Develop consolidation plan for gate ends				
42			shotfiring in floor gas hazard zone in development causing delays (e.g. poor floor conditions)	Longwall standards PIF zone identified on the hazard plan Survey pickups ERZ inspection	2M	2	5L	Provide plan of area where shotfiring and/ PIFfing occurred – R Goonawardene	S	2	5L	
43			Floor heave causing equipment clearance issues and/ or damage. Clearance for BSL Monorail hoses dragging on the ground	Longwall standards Survey pickups ERZ inspection Procedure to manage offline drivage Development standards	2M	2	5L	Develop and distribute as mined cut profile in TG and MG roadway highlighting areas of low clearance – R Goonawardene	2M	2	5L	
44	Known Geology	Hardness of coal and stone hardness when cutting out of seam	Increased frequency of pick changes on shearer drum	LW Standards –GRO-4801 and 5372 Hazard plans/face mapping Cut height management Face mapping by geologists Control of haulage speed through GRO-750-TARP-General Body Contaminant Revised drum and pick design LW Automation HMP controlling frictional ignition, LW frictional ignition standards and controls	2M	2	5L				1	

Version:		Print: 8/04/2020
Date of Issue:	05/03/2020	Page 90 of 111
	Date of Issue:	2.11011111

45	Known Geology	Hardness of coal and stone hardness when cutting out of seam	Increased fly rock	LW Standards –GRO-4801 and 5372 Hazard plans/face mapping Cut height management Face mapping by geologists No Go Zones	28	2	5L					
46	Known Geology	Loss of horizon control	Low yield - coal quality	Face mapping Grade plans Ash and Yield monitoring/reconciliation CHPP communications (anticipated yield) daily face mapping report Permit to Mine LW Automation LW Operation standard	2M	2	5L					
47	Known Geology	Mining through geological anomalies	Loss of horizon control or face stability issues causing production loss	 LW Standards –GRO-4801, 5372 LVA Strata Consolidation Capability Horizon Control and face mapping GRO-42-HMP – Mine Inspection system, GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection Cut height management Geological model GRO-3385-PRO-Permit to Mine GRO – 7774 -TARP- Strata Control Longwall Gate end roadways GRO – 7774 -TARP- Strata Control Longwall Gate end roadways – adjacent roadways GRO – 5833 -TARP- Strata Control Longwall Face Operations GRO – 5609 – TARP –Longwall Creep and Face Alignment 	4M	3	18S	LW Flight plans to be known structures – S Giese	4M	3	185	
48		Mining through geological anomalies	Exposing GML seam resulting in increased gas make on the longwall face	Gas monitoring Ventilation management plans Gas detectors ERZ Controllers inspections GRO-750-TARP-General Body Contaminants Gas complance boreholes	2M	4	12 M				3	
49	Known Geology	Automation failure	Loss of horizon control or face stability issues causing production loss GRO-10671-RA-LW104 Secondary Or	LW Standards –GRO-4801, 5372 LVA Strata Consolidation Capability Horizon Control and face mapping GRO-42-HMP – Mine Inspection system, GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection Cut height management Geological model GRO-3385-PRO-Permit to Mine GRO – 7774 -TARP- Strata Control Longwall Gate end roadways GRO – 7774 -TARP- Strata Control Longwall Gate end roadways – adjacent roadways Griginal Issue Date: Version: 1	3M	1	6M					

GRO-10671-RA-LW104 Secondary Extraction Original Issue Date: Version: 1 Print: 8/04/2020 Page 91 of 111

PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING

	To the second se	4	1	Table to be a second				The state of the s	-	
				GRO – 5833 -TARP- Strata Control Longwall Face Operations GRO – 5609 – TARP –Longwall Creep and Face Alignment Maintenance programme Third party monitoring of automation						
50	Known Geology	Changes in seam gradient whilst mining	Loss of horizon control or face stability issues.	 LW Standards –GRO-4801, 5372 GRO-42-HMP – Mine Inspection system, GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection GRO-3385-PRO-Permit to Mine Hazard plans and face mapping Geological model GRO – 5609 – TARP –Longwall Creep and Face Alignment GRO – 7774 -TARP- Strata Control Longwall Gate end roadways GRO – 7774 -TARP- Strata Control Longwall Gate end roadways – adjacent roadways GRO – 5833 -TARP- Strata Control Longwall Face Operations 	2M	3	8M			
51	Known Geology	Retreat extraction of the seam at a grade	Excessive Creep	 Ability to lead and lag face LW Standards –GRO-4801 and 5372 Gateroad survey (offline driveage identified) Fly cuts/ moderation cuts GRO – 7774 -TARP- Strata Control Longwall Gate end roadways GRO – 7774 -TARP- Strata Control Longwall Gate end roadways – adjacent roadways GRO – 5833 -TARP- Strata Control Longwall Face Operations GRO – 5609 – TARP –Longwall Creep and Face Alignment Monitoring plan to correlate lead-lag vs RL variance and impact on creep Face Boss GRO-3385-PRO-Permit to Mine GRO-42-HMP – Mine Inspection system, GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection 	3M	2	9M			
52	Geotechnical considerations	Mining through non-standard driveage (i.e. tripper drives) This includes mining through known gateroad cavity zones	Roof / rib failure causing personal injury	Mined to the specifications of the equipment Equipment design (Longwall capacity) Planned Maintenance strategies (hydraulic health) Mine planning strategies (timing and location for stoppages) GRO-5861-STD Grosvenor mine planning standard Mine design, Supports Design and OEM approval Cutting horizon	2M	1	2L	Confirm the roadway is not greater than 5.0m high along the length of the block – J Mackey		

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 92 of 111

			 LW Standards –GRO-4801, 5372 Hazard Plan LW103 Geological model, Face Mapping & Inspections GRO-42-HMP – Mine Inspection system, GRO-77-SOP – Underground Workplace Inspections system - ERZ controller inspection LVA Monitoring and training of LW personnel Shot firing capability GRO – 7774 -TARP- Strata Control Longwall Gate end roadways – adjacent roadways GRO – 5833 -TARP- Strata Control Longwall Face Operations GRO – 5609 – TARP –Longwall Creep and Face Alignment GRO-3385-PRO-Permit to Mine Mine managers support rules 								
53	Mining into pre-driven roadways	Strata failure / cavities in gas drainage stubs causing personal injury or production loss	Support Design standards Install schedule for standing support Manager's Support rules Strata Monitoring Specified minimum distance for secondary support ERZ Controller inspections Permit to Mine for LW includes UG inspection Peer review of support standard Gas drainage stub decommissioning standard	2M	2	5L	Design flight plans / excavation plans and false roof for LW104 chute roads to allow transition for bolt up and back fill floor to bolt row 1 – S Giese Develop a standard for backfilling stubs – S Giese	2M	2	5L	
54	Increased stress as retreating face approaches previous install face	Roof fall in TG roadway or cut-through causing personal injury or production loss Stress notch	 Primary and secondary support designs Strata Monitoring ERZ Controller inspections LW Operational Standards Strata TARPS / SCARPS Permit to Mine GRO – 7774 -TARP- Strata Control Longwall Gate end roadways – adjacent roadways GRO – 5833 -TARP- Strata Control Longwall Face Operations GRO – 5609 – TARP –Longwall Creep and Face Alignment Learnings out of the LFI in LW103 stress notch failure 	3M	3	13S	Ensure that no significant planned maintenance activities occur in the stress notch zone – J Agustin	3M	3	138	
55	Loss of creep control or misalignment of MG 104	Inability to access the face via designated wa kway causing personal injury or production loss	Surveyed roadways Target line (face Alignment) Ability to lead and lag face LW Operational standards Short interval control (shear by shear) Fly cuts/ moderation cuts Development Standards Gate road driving tolerances GRO – 5833 -TARP- Strata Control Longwall Face Operations	2M	3	8M					

Original Issue Date:	Version:		Print: 8/04/2020
05/03/2020	Date of Issue:	05/03/2020	Page 93 of 111
	Original Issue Date: 05/03/2020		

			GRO – 5609 – TARP –Longwall Creep and Face Alignment ERZ Controller inspections				
56	Strata failures in Bleeder Road / Perimeter Rd	Restricted access to VCDs and bleeder / perimeter road causing personal injury or production loss	Support Design standards TARPs Strata Monitoring in place Geotechnical and geological mapping GRO-77-SOP-Underground Workplace Inspections' Strata PHMP	2M	2	5L	
57	Roadway failure	Loss of services (water, compressed air, monitoring, de-water, communications, power)	Multiple communication systems (DAC, UG phones, mobile/pit phones/PED loop, MST comms) Multiple roadways/routes Surface borehole access Roadway support design Geological mapping and strata control checks TARPs Telltales	3M	1	6M	
58	MG103 EPS issues	Abutment load impacting the MG103 EPS	Stability report from PDR Engineers Lies outside the predicted subsidence zone	3M	1	6M	
59	Roof/floor convergence/ out of tolerance driveage results in BSL/LW infrastructure becoming iron bound in belt road	BSL/LW infrastructure becoming "iron-bound" in belt road causing production loss	Secondary support Roadway design upon development (3.8 cut height in belt road) Belt road survey – check survey prior to commissioning MG Plough under BSL Telltale in GR Shotfiring capability Alternate access to LW gear (crawl way over BSL)	3M	2	9M	
60	Operating the LW	Face support system failure, resulting in increased risk of cavities and injury to CMWs due to falling debris and remediation work e.g US Flippers	LW Operational Standards LW Operational TARP/Management plans Maintenance scheduling OEM on site LVA Commissioning once installed Intro to site process for overhauled equipment Leg set procedure on start-up	28	3	8M	
61	Operating the LW	Face support system failure, resulting in increased risk of cavities and loss of production	LW Operational Standards LW Operational TARP/Management plans Maintenance scheduling OEM on site LVA Commissioning once installed Intro to site process for overhauled equipment Leg set procedure on start-up	2\$	3	8M	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 94 of 111

62	11 11 11 11 11 11 11 11 11 11 11 11 11	tment load being transferred onto	Catastrophic Failure of goaf seal releases goaf gases or water into mine workings from adjacent workings/goaf	Primary and secondary support ERZ inspections Seal inspections RPEQ Seal design – including rib/roof support ERZ inspections VCD maintenance inspections Ventilation system Gas monitoring Seal and installation sign off and checklist (QA/QC) Rated seal designs with P-Trap and water head 5m or more Mine dewatering system	2M	2	5L	
63	The state of the s	essive loading during Longwall ing / retreating	Uncontrolled failure of pillars	 Pillar design Anglo Geotechnical OMS Standards. Geologist / Geotechnical Engineer inspections regarding roof and rib stability. TARPS Strata Monitoring regime Mine inspection regime Strata support (secondary, primary) Strata PHMP SMA process 	28	1	3L	
64	Edges of Goaf Areas Gap	between chocks	Goaf materials falling between shields causing personal injury	LW Operational Standards ERZ Controllers Inspections No go / Restricted cutting zones Anti-topple ram MG & TG Side shields Ability to fit temporary guarding (tensar mesh) between shields Cavity fill options	28	2	5L	
65	Goal	of edge overruns support Gate-end	Goaf flushing causing production loss	TG and MG Primary support Seal protection support - goaf side standing support Rated Seal design ERZ Controller Inspections Creep management for RL difference Flushing shield installed Breaker line support Maintenance strategies Geological Inspections	ЗМ	3	138	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 95 of 111

Coal Extraction Method and Sequence

Extraction of the LW104 block will be completed using a retreating longwall methodology; being predominantly bi-directional cutting and with uni-di cutting if required to better manage face conditions. Cutting will be confined to the Goonyella middle seam. The extraction section will vary dependent on the roof coal beam thickness requirements, equipment capability and operational requirements to manage conditions present on the face. Longwall 104 parameters are presented in Table 4.

Table 4 - Longwall 104 Parameters

LW104 DA	TA
Planned Panel Start Date – MOP011 2019	25 February 2020
Planned Panel Finish Date – MOP11 2019	6 May 2021
Block Width (solid m)	301
Block Length (m)	4,381
Total ROM Dat	ta
Run-of-Mine Tonnes	8.6mt
Product Tonnes	5.9mt @ 11.5%
Cutting Rates	
Cutting Rate (t/h) MOP11 2019	~ 1841
Cutting Rate (h/w) MOP11 2019	~ 95

Maximum cutting height is defined by the planned coal roof beam as directed by the Geology and Geotechnical department as a control for cavity formation. Beam thickness requirements will be reviewed continuously and managed using risk-based logic. No floor coal will be maintained; however, some floor stone may be cut if required. Cutting height is as per instruction from the Longwall Superintendent as long as it meets the equipment requirements and maintains the coal roof beam.

In accordance with CMSH s326 and s327, upon completion of the extraction process, a Sealing Management Plan will be developed to determine the method of sealing the panel. Notice of the proposed sealing will be given to the Mines Inspector and to the Site Safety and Health Representative at least 30 days prior to sealing. Seals are based upon the estimated water level inside the goaf.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 96 of 111

No.	ISSUE OR STEP IN OPERATION			DESCRIBE THE RISK EXISTING CONTROLS	INITIAL RISK RATING (IRR)			ADDITIONAL CONTROLS	RESIDUAL RISK RATING (RRR)			Acceptable YES = RRR below 13 NO = RRR above 13 and enter into High Risk
					С	L	R		С	L	R	(>13s) & Non-Consensus Items Table
66	Coal Extraction Sequence	Long term exposure to respirable dust High ventilation velocities raises dust Dry coal due to gas drainage increasing dust make	Exposure above the respirable dust OEL	 PPE Dust monitoring Dust HMP Dust TARP Dust mitigation No go zones VO targeting 60m³/s Operational Standards (washing supports) Roadway maintenance 	2Н	3	8M					
67	Coal Extraction Sequence	Equipment damage	Insufficient clearance for service installations	Standard roadway designs Development panel standards 70m long cut throughs Plan in place to Muck/grub floor in odd C/T's to ensure clearance for LW TX & Pump carts	2M	2	5L					

Ventilation

1. Longwall Retreat and Installation Ventilation

Shaft #6 at A heading 11 c/t in the Mains is the exhaust shaft for the mine with 3 main fans. Ventilation intakes will include the travel drift, belt drift, Shaft #4 (2.2m) and Shaft #5 (2.2m). Refrigeration infrastructure has been installed on shaft #4, shaft #5, men and materials drift and planned for MG103EP Shaft

LW104 will be ventilated with a homotropal maingate and tailgate B heading return (Error! Reference source not found.31.

MG103EP shaft has a single fan and cooling available to ventilate B Hdg inbye the longwall.

The ventilation circuit will change to an antitropal Maingate as part of the longwall recovery process and some regulation may be required.

TG103 34-40c/t will be dual returns. Man doors will be used to control ventilation through to C Hdg, barriers and barricades will prevent access into this area.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 97 of 111

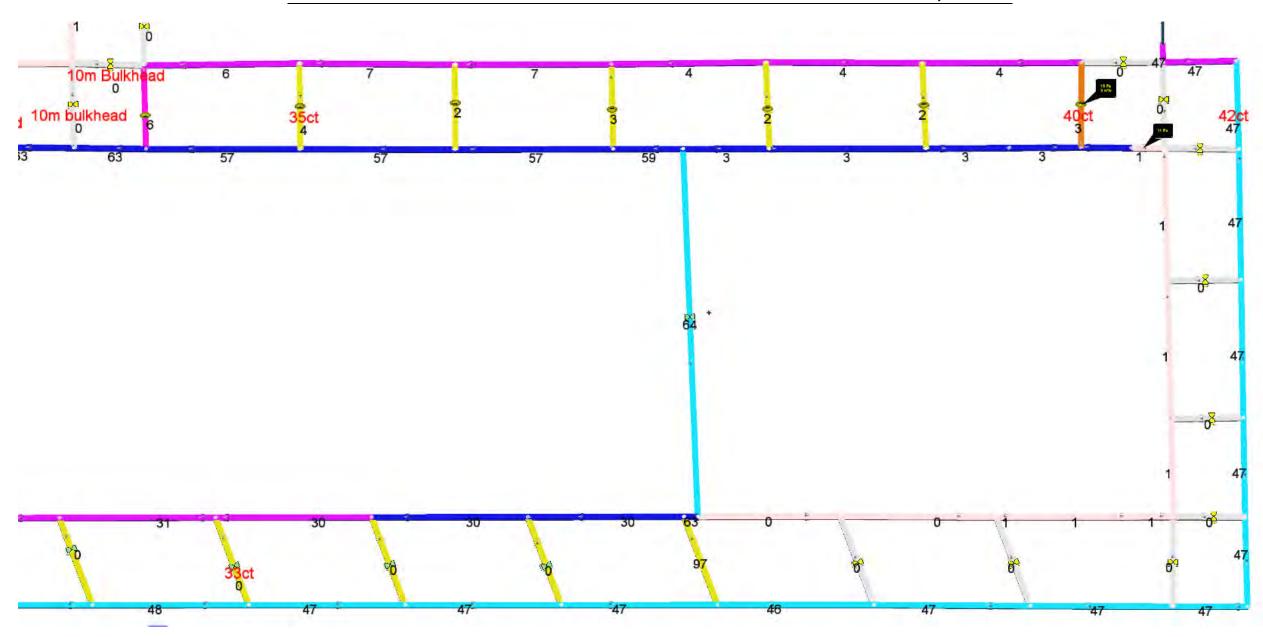


Figure 31 - Homotropal Maingate and inbye ventilation

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 98 of 111
PRINTED COPIES OF THIS DOC	LIMENT ARE UNCONTROLL	ED AND DEEMED VA	LID ONLY ON THE	DAY OF PRINTING

No.	ISSUE OR STEP IN OPERATION	ENERGY/HAZARD/ISSUE THAT MAY BE PRESENT	DESCRIBE THE RISK	EXISTING CONTROLS		TIAL R		ADDITIONAL CONTROLS			OUAL ATIN	۸ ۸	Acceptable YES = RRR below 13 NO = RRR above 13 and enter into High Risk
	0.12.00				С	L	R		С	L	_	R	>13s) & Non-Consensus Items Table
68	Main fans stoppage, VCD fail, open / short circuit , flooded roadways etc.		Insufficient Ventilation causing production loss or personnel injury	Sufficient ventilation system (design) Ventilation PHMP Face ventilation quantity sufficient to dilute predicted gas make. Stat inspections Ventsim model External consultant modelling (Ventsim) Gas drainage system (pre and post) Vent change Process Tube bundle monitoring/ sensors Permit to Mine Automated generator starts up for main vent fans with CITEC capable remote switching in LW104 GRO-xxxxx-TARP- General Body	2M	3	8M						
69	Heat generated by mining equipment and geo-thermal gradient influencing mine conditions		Inadequate Ventilation / cooling causing production loss or personnel injury	Sufficient ventilation system (include BAC and Fans) GRO-15-PHMP-Ventilation GRO-160-TARP-Heat Management Face ventilation quantity Mine cooling system on surface (BAC) GRO-48-HMP-Management of Heat LW operational standards Competent ERZ controllers taking work place measurements (stat responsibility) Air movers Permit to Mine	35	2	9M						
70	Change ventilation from Homotropal to Antitropal		Ventilation changes affecting mining environment and leading to delays	Sufficient ventilation system (include BAC and Fans) Ventilation PHMP Face ventilation quantity sufficient to dilute predicted gas make. Stat inspections Ventsim model Gas drainage system (pre and post) Vent change Process Tube bundle monitoring/ real time sensors and change permit	28	2	5L						
71	Ventilation Reversal inbye of LW	GAS	Pressure change on face leads to production delay	Gas monitoring system Vent change modelling Vent change permit process Planned work to set up an upcast shaft inbye the longwall would require change management and risk assessment as per standard procedure at grosvenor	28	2	5L						

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 99 of 111

1. Controlling Spontaneous Combustion

Goaf seal designs are certified by a RPEQ and a quality assurance process will be implemented during the construction process. A seal site secondary support plan has been developed to protect the seal site area from strata deterioration.

There is a commissioned Floxal system on site and will be used for the pro-active inertisation of the panel, as well as managing any TARP triggered. Underground inertisation range will be installed to deliver inert gas into the active goaf and the floxal unit is visible on Citect.

The mine currently has the capability to run over 4,000m³/hr of inert gas with two different inert gas generators. Both floxal units will be used for the pro-active inertisation of the panel, as well as managing any TARP exceedances. Three TARPs will be used throughout the life of the panel consisting of the following stages, active, newly sealed and sealed. In addition, a Tomlinson boiler is available to increase the inertisation capabilities.

Spontaneous combustion testing was carried out for Grosvenor (CB3 Technical report TR009, CB3 Technical report TR014, CB3 Technical report TR047 and Draft B3 Technical Report 2019TR019 Spontaneous combustion assessment of core samples from boreholes at Grosvenor Mine). The R70 self-heating rate values recorded for the samples ranges from 0.02 to 0.40°C/h, which is consistent with the coal rank and type, and rates the coal as having low intrinsic spontaneous combustion reactivity. These results are similar to those obtained for Moranbah North and Moranbah South.

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 100 of 111
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROLLE	D AND DEEMED VAI	LID ONLY ON THE	DAY OF PRINTING

No.	ISSUE OR STEP IN	ENERGY/HAZARD/ISSUE	DESCRIBE THE RISK	EXISTING CONTROLS	EXISTING CONTROLS INITIAL RISK RATING (IRR) ADDITIONAL CONTROLS		ADDITIONAL CONTROLS		ESIDI K RA	TING	Acceptable YES = RRR below 13 NO = RRR above 13 and	
	OPERATION	THAT MAY BE PRESENT			С	L	R		C	(RRF	() P	enter into High Risk (>13s) & Non-Consensus Items Table
72	Method of Controlling Spontaneous Combustion		Less than adequate operation of the inertisation plant and/or inertisation plant stops and causes TARP trigger to be reached and delay the mining operations	2xFloxal units Spontaneous Combustion PHMP TARPs Gas monitoring Safety Alert – CO monitoring on the floxal plant has been installed. Real time monitoring on floxal units Maintenance regime (including inspections) of the floxal plant	2M	2	5L	Confirm inert line is installed into the existing goaf seals prior to startup. – H Hearne Install flow meters on UG nitrogen pipeline so we can measure what we are doing				nems rabie
73	Method of Controlling Spontaneous Combustion		Geological anomalies increases spontaneous combustion potential and risks to operations	Goaf Management Procedure Inertisation capability. Spontaneous Combustion PHMP/TARPs Monitoring Bag sample regime Seal design Geological mapping /geotechnical inspection ERZ Controller Inspections	2M	3	8M					
74	Method of Controlling Spontaneous Combustion		Improperly stored stowage in gateroads against existing seals drawing oxygen across the stow,	Stowage management plan and permits PHMP for Spontaneous Combustion Gas monitoring systems ERZ Controller inspection	28	1	3L					
75	Method of Controlling Spontaneous Combustion		Incomplete goafing creates air path to goaf until square up, resulting in increased spontaneous combustion risk and production delays	Gas monitoring Goaf stream bag samples Spontaneous Combustion PHMP Spontaneous Combustion TARPs ERZ Controller inspections STD.LW.0001 LW Operational Standards	2M	3	8M					
76	Method of Controlling Spontaneous Combustion		Air wash zone not adequately controlled (floxal), resulting in increased spontaneous combustion risk and production delays	Spontaneous Combustion PHMP Spontaneous Combustion TARPs Gas Monitoring Bag sample regime Floxal Safety Management Plan ERZ Controllers inspections Proactive inertisation Permit to Mine	2M	3	8M					
77	Method of Controlling Spontaneous Combustion		Oxygen ingress in to the goaf – Due to increased bleeder pressure across goaf resulting in possible increase in spon comb risk resulting in production delay triggered by TARPs	Spontaneous Combustion PHMP/TARPs Monitoring/sensors Bag sample regime Seal design Inertisation available (floxal/boiler) Mine inspection regime Depth of cover in case of surface to working Ventilation modelling and ventilation surveys Goaf management plan	2M	3	8M	Plan to seal perimeter road when end of panel shaft is online – currently in process	2M	3	8M	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/202	
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 101 of 111	

			Regulators on shaft bottom and top Inspection regime for high ventilation areas and defined frequencies Inertisation capability in Spontaneous Combustion TARP Longwall goaf management plan Pressure differential monitoring on seals								
78	Method of Controlling Spontaneous Combustion	Failed goaf seal introduces oxygen into goaf causing production delay	Spontaneous Combustion PHMP/TARP ERZ inspections Seal inspections Seal design – including rib/roof support ERZ inspections VCD maintenance inspections Ventilation system Gas monitoring Seal and installation sign off and checklist (QA/QC)	2M	3	8M					
79	Method of Controlling Spontaneous Combustion	Ingress of oxygen into the goaf due to UIS holes open through MG pillar	Goaf Drainage monitoring Goaf Drainage PHMP Gas Monitoring and TARPS Spontaneous Combustion PHMP Grouting of UIS and SIS holes BINs on development intersection stipulate treatment method	2M	3	8M	Conduct audit on intersected UIS holes in MG104 – R Kostowski	2M	3	8M	
80		Surface cracking leading to ingress of oxygen into the goaf	Depth of cover Mine design Subsidence Modelling Spontaneous Combustion PHMP/TARP	2M	2	5L					

Friction Ignition

Frictional ignition will be managed in accordance with the controls dictated in the HMP Controlling Frictional Ignition

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 102 of 111

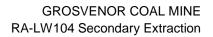
No.	ISSUE OR STEP IN OPERATION	ENERGY/HAZARD/ISSUE THAT MAY BE PRESENT	DESCRIBE THE RISK	EXISTING CONTROLS		TIAL R		ADDITIONAL CONTROLS		ESIDU SK RA (RRF	TING	Acceptable YES = RRR below 13 NO = RRR above 13 and enter into High Risk (>13s) & Non-Consensus ttems Table
	OI EMAILEM	THAT MAT DE TREDENT			С	L	R		С	L	R	(>13s) & Non-Consensus Items Table
81	Frictional ignition	Managing Frictional Ignition	Steel strike (drum hitting TG bolts, steel, chocks, etc.) causing a spark results in increased FI risk	Adequate ventilation Fit for purpose equipment Sprays Ventilation standards Gas monitoring ERZ controller inspections Permit to Mine Face automation TG support design offset from block side rib Longwall Panel Standards Stone dusting regime Maintenance regime Frictional Ignition Management Plan /TARP TG roadway monitoring Anti-collision software Removal of gas drainage infrastructure at drilling stubs Firefighting equipment	28	2	5L					
82	Frictional ignition	Managing Frictional Ignition	MG or TG support setting against bolts causing spark in roadway leading to increased frictional ignition risk	Ventilation ERZ Controller inspections Stone dusting regime Environmental Monitoring Shield Cycling Frictional Ignition Management Plan/TARP Support offset into TG roadway Sprays Gas drainage	28	2	5L					
83	Frictional ignition	Managing Frictional Ignition	Cutting hard material (e.g., pyrite or sandstone) results in increased potential for a frictional ignition	Adequate ventilation Fit for purpose equipment LW maintenance strategy Sprays Ventilation standards Gas monitoring ERZ controller inspections Permit to Mine Geological mapping Longwall Panel Standards Frictional Ignition Management Plan/TARP FI checks	25	2	5L					
84	Frictional ignition	Managing Frictional Ignition	Gas sources (blowers in the floor, gas under the pan, gas out of the roof) result in increased safety risk to CMWs or loss of production	 Adequate ventilation Sprays Ventilation standards Gas monitoring ERZ controller inspections Permit to Mine 	3S	1	6M					

Date: Version:		Print: 8/04/2020
Date of Issue:	05/03/2020	Page 103 of 111
	Date of Issue:	

				TARPs for ventilation, gas management, & frictional ignition Automation Longwall Panel Standards Historical data (driveage) Horizon control Gas drainage Borehole intersection notices LW face mapping Speed sensor in TG Dust and FI checks					
85	Frictional ignition	Managing Frictional Ignition	Incendive sparking from sandstone bodies/ free stone on the AFC / BSL causing production loss	Gas Drainage Dust Suppression Water sprays Horizon control management Ventilation PHMP Geological Hazard Plan Fl checks -pick standard Gas monitoring ERZ controller inspections Permit to Mine Longwall Panel Standards Frictional Ignition Management Plan/TARP LW face mapping	1M	3	4L		
86	Frictional Ignition	Managing Frictional Ignition	TG STD Support - shearer cutting into the steel cans/ PCBs containing steel mesh leading to regulatory breach NB: potential for cold spark being initiated	No steel cans planned in the TG roadway Support design for the TG roadway Shearer Sprays Adequate ventilation Fit for purpose equipment Sprays Ventilation standards Gas monitoring ERZ controller inspections Permit to Mine Shearer automation TG support design offset from block side rib Longwall Panel Standards Stone dusting regime Maintenance regime Frictional Ignition Management Plan/TARP TG roadway monitoring	1L &R	2	2L		
87	Frictional ignition	Managing Frictional Ignition	Excessive heat from chain rerouters causing ignition	Mexican sprays (bottom race/underside spray) on the MG and TG rerouters LW operation standards Stat inspections/inspection regime Auto chain tensioner Chain tension checks GRO-3303-HMP Control of Frictional Ignition	15	2	2L		

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 104 of 111

				 GRO-1629-HMP- Introduction of Underground Equipment GRO-4801-STD – Longwall Standards GRO-5372-STD – Longwall Operational Standards GRO-42-HMP – Mine Inspection System 				
88	Frictional ignition	Managing Frictional Ignition	Excessive heat from trapping shoe wear / shear pin on the AFC causing production delay	 Coal friction co-efficient survey – OEM design GRO-1629-HMP- Introduction of Underground Equipment GRO-3303-HMP Control of Frictional Ignition Maintenance strategy and monitor the wear 	15	2	2L	
89	Frictional ignition	Managing Frictional Ignition	Shearer intersecting metallic objects/artefacts in boreholes / gaswell leading to delays in operation	Grade/flight plans for gas risers LW103 Hazard plan Borehole database GRO-15-PHMP Ventilation GRO-3303-HMP Control of Frictional Ignition GRO-3385 – PRO- Permit to Mine Face/Pick Sprays GRO-8804-PMT Permit to Drill (UIS) GRO-8480-PMT Permit to Drill (Surface) GRO-3595 HMP Intersecting Boreholes Stat inspections Borehole Completion reports GRO-3223-SWI- Operational No Go Zones GRO-241-SOP- Control of Energy Standard for decommissioning stubs (removes all metallic objects in the stub)	2\$	2	5L	
90			Cutting concrete or shotcrete increasing frictional ignition risk	Water sprays Horizon control management Ventilation PHMP FI checks -pick standard ERZ controller inspections Frictional Ignition Management Plan/TARP	28	2	5L	


Suitability of Plant

A single 4,500tph 300m wide longwall system is operating at Grosvenor. Table 5 below details the specification of Grosvenor longwall specifications.

Table 5 - Longwall Equipment Capabilities

Equipment	Requirement

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:		Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 105 of 111

D (C	Operating Height
Roof Supports	Operating Height Max open: 5.0m
	Min operating: 3.5m
	Min transport: 2.4m
	Leg Capability
	Support rating: 1750 tonnes
	Yield: 875 tonnes
	Set: 766 tonnes
	Set to yield 87%
	Canopy
	Length
	Face side: 3.9m
	Goaf side: 1.8m
	Canopy ratio 2.14:1
	Width 1.9m
	Roof contact area 11m2
	Roof set pressure 2.5Mpa
	Base Floor contact area 5.8m2
	Floor set pressure 1.3Mpa
	Flipper
	Tip load $2 \rightarrow 21$ tonne
	·
	Two leg, IFS canopy and single side shield Full electro-hydraulic system
	Suit longwall automation. Integrated dust suppression sprays
	Structural life – 70,000 cycles
Shearer	Double ended ranging arm multi-motor shearer
oca. c.	Suit 4,500tph Nameplate Capacity longwall Radio remote control
	Bi-directional data communication system Suit longwall automation
	Shearer Height
	<u>Cut height</u>
	Maximum: 5.0m
	Minimum: 3.5m
	Tunnel Capacity 5037tph
	Utilisation @ 13m/min 61%
	Sloughing plate
	Machine height currently 2.6m
	Machine height minimum 2.2m (must be horizontal)
	<u>Drum Profile</u>
	Drum configuration
	MG: 2.5m
	TG: 2.5m
Armoured For- C	
Armoured Face Conveyor	Continuous rating 4,500tph, peak volumetric capacity 5,000tph Capable of a reserve chain pull of 170
(AFC)	tonnes during starting
	Automatic chain tensioning system
Beam Stage Loader (BSL)	Continuous rating 5,000tph
	Automatic chain tensioning system
	Full dust cover and system including dust extraction
Crusher	
Crustier	Continuous rating 5,000tph Output regulation <4,700tph Output material sizing to <300mm
	Output regulation \$4,700tpit Output material Sizing to \$300mm
Boot End	Skid type with steering, side shift and levelling Overlap to suit two face advances
	Belt conveyor tail pulley to transfer load to the stage loader Belt lifting unit to assist with conveyor
	structure salvage
	Suit 1,600mm belt width maingate conveyor
	Suit 1,000mm beit witti mangate conveyor

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 106 of 111
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROLL	ED AND DEEMED VA	ID ONLY ON THE	DAY OF PRINTING

Longwall Pump Station	Tracked mounted pumps and tanks, capable of being relocated
	underground by tramming or towing with mine LHD vehicles Located in cut though outbye of the
	longwall face, one station
	connected to longwall system by monorail system, second station on maintenance, ready for re-connection to
	monorail upon services relocation
	Services provided by station:
	Hydraulic supply for roof supports with 20% reserve capacity. Water supply for shearer cooling and
	dust suppression sprays.
	Water supply for roof support dust suppression sprays
Monorail System	Suit 250m of longwall retreat between retractions
	Included 110m movement materials management system
	Includes monorail installation and salvage platforms and relocation sleds etc.
Electrical System	Incoming supply – 11kV Face voltage 3.3kV
	Designed to limit voltage drop during AFC overloaded starts to 20% of nominal motor voltage
	Inter-systems integration via Ethernet IP
	Allen Bradley Control Logix PLC based control system Includes face, BSL, monorail area
	lighting
Automation System	Includes LASC standards

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 107 of 111
PRINTED COPIES OF THIS DOC	UMENT ARE UNCONTROLLE	D AND DEEMED VAI	ID ONLY ON THE	DAY OF PRINTING

No.	ISSUE OR STEP IN	THE CORE THE DICK FAIGHNIC CONTIDING			DESCRIBE THE RISK	EXISTING CONTROLS	INITIAL RISK RATING (IRR)			ADDITIONAL CONTROLS	RESIDUAL RISK RATING (RRR)			Acceptable YES = RRR below 13 NO = RRR above 13 and enter into High Risk
	OPERATION	THAT MAY BE PRESENT	320000000000000000000000000000000000000		C	11	P		C	(KKK		(>13s) & Non-Consensus Items Table		
91	Plant	Mining equipment not fit for purpose	Longwall equipment suitable to maintain acceptable level of risk for personnel working on the longwall face	Longwall equipment has been designed to operate in anticipated conditions Support capacity shields (1750 ton) Modelled Shield height limits (3.7-5.0m) Shield capable of 1000mm advance Hydraulic capacities; 6 system pumps & 2 Hi-set pumps 930l/min shearer water booster pump Geological model used in design of the LW system LW commissioning documents Longwall maintenance strategies GRO-1629-HMP- Introduction of Underground Equipment GRO-5609-TARP – Longwall Hydraulic Integrity GRO-4801-STD – Longwall Operational Standards GRO-42-HMP – Mine Inspection System GRO-4801-STD-Longwall Standard Area Management System Longwall operational systems GRO-241-SOP- Control of Energy GRO-200-PRO Change Management GRO-5861-STD Mine Planning Standard GRO-3231-PRO-Grosvenor Commissioning Execution Plan Ramp up procedure	35	2	9M	Confirm road heights in belt road and TG roadway are outside 3.6m to 4.2m in height – J Mackey	3S	2	R 9M	Rems Table		
92		Increasing the cut height to greater than 4.2m causing personal safety or business interruption	Additional gas and heat in the rear walkway Change in ventilation pathway through the longwall equipment profile	LW Operational RA Vent model GRO-15-PHMP-Ventilation ERZ Inspections Pre and post drainage Use of venturis if required Brattice wings / sails Option for Bulk air coolers from the 103 EPS Heat Management TARP Gas PHMP General Body contaminants TARP	2H	3	8M	Review the effectiveness of the ventilation change from 103 to 104 due to the MG103 EPS – H Hearne	2H	3	8M			
93			Personnel ergonomics due to the increased cut height working in the rear walkway	Manual handling SOP Maintenance work orders Operational procedures Chock washdown hoses	35	2	9M	Complete RCA on Hyena effect – M.Wakeford Review requirement of the dust gutters in rear walkway and remove if not required – B.Thomson	3S	2	9М			

GRO-10671-RA-LW104 Secondary Extraction Original Issue Date: Version: 1 Print: 8/04/2020 Page 108 of 111

PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING

							Review design of sprays in rear walkway to be in a more appropriate position – Flushing or dust suppression – B.Thomson				
94		Risk of slabbing/ face spalling	GRO-5314-PRO-Equipment Hazard Zones GRO-5372-STD – Longwall Operational Standards Flippers Remote operating standard	2S	3	8M	Investigate sprag extensions – B Thomson Review procedure to add relocating control equipment to the rear walkway prior to cutting at heights above 4.2m – J.Agustin	2\$	3	8M	
95		Maintenance of all Longwall face equipment (e.g. Fl checks, Shearer, AFC, Bretby, PRS, DACs, Phones, Interchock hoses) exposing a CMW to falling material	GRO-5372-STD – Longwall Operational Standards Flippers GRO-5314-PRO-Equipment Hazard Zones	4\$	3	18S	Ensure the maintenance strategy for cutting at heights above 4.2m reduces exposure to personnel (i.e. stables, flipper extensions, supported face) - J.Agustin Review GRO-5314-PRO-Equipment Hazard Zones in regards to cutting at heights above 4.2m – J.Agustin	38	2	9М	
96		Design of electrical equipment suitable for greater cut height (e.g. cable length, voltage drop)	Current overhaul for LW104 longwall equipment is designed to cut up to 5.0m	2M	3	8M					
97		Operational capacity of longwall conveyance system with increased cutting rates due to increased cutting height above 4.2m	Current longwall design is for 4,500 t/h continuous and peak loading of 5,000 t/h	2M	3	8M	Review conveyor system capacity – M Shields Perform bottleneck analysis on coal clearance systems to ensure capacity for mining at greater heights – J Agustin (Investigate optimising the side shields to increase operating area for personnel in the rear walk way	2M	2	5L	
98	Failure or damage of Longwall components resulting in the business interruption	Failure of Longwall components - Drums - Down drives - AFC Sprockets - AFC gear boxes - BSL Sprockets - Chains (Flight Bars) - Bolts - Deck Wear in the ramp area - Drive gear boxes - Interchock hoses - Cables	Maintenance and Overhaul strategy developed from events experienced in mining LW101, 102, 103	3M	4	178	Moranbah North style flushing shields to be used in LW104 (Change management to be completed) – B.Starr Review issues with Anti topple encountered in LW103 and remediation strategy for LW104 – B.Thomson Review issues with electrical crossover and impact on the Bretby and remediation strategy for LW104 – S.Wood	3M	3	138	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 109 of 111

		 Flipper cylinders Crusher hammer Promos and lock out Solenoids / POCV 					Review issues with AFC pan wear around articulation joints during LW103 and remediation strategy for LW104 – B.Starr Review longwall 104 monitoring strategy for deck wear – B.Thomson Review the Komatsu service agreement – M Britton Maintenance strategy for major components to align component failure cycle and physical locations adequate for the changeout of those components (e.g. planned down drive change out) – R Skinner				
99	Business interruption due to failure of stonedust application in TG for LW production	Stonedust pipeline blocks up	Stonedusting STD Secondary stonedust line running across the panline	2L &R	4	12 M	Communicate LW104 stonedusting strategy – J.Simmonds Provide schedule and location for services boreholes based on development intersection dates – R Goonawardene Ensure that 2 x bulk dusters are available for the longwall in the event the stonedust dropholes fail – J Lancaster	2L &R	4	12 M	
100	Supply of Components	Failure to meet time lines causing delays Lack of spares for Becker equipment Turn-around time for repairs POCVs and Solenoid availability	Stock levels Monthly contractor meetings with OEM Defect liabilities in OEM contracts	2M	3	8M	Review min max levels of spares (Becker, DACs, solonoids, POCVs, etc.) in stores to ensure they are sufficient – J Agustin Investigation for using local supplier for critical spares ongoing– I Bailey BCO to provide report when min/max stock levels for spares are altered – Procurement (W Peyper)	2M	3	8M	
101	Hydraulic integrity	Loss of hydraulic integrity Pump station reliability Replacement POCVs and solenoids not being fit for purpose	Pump station overhauls scheduled to be complete for LW104 Hydraulic integrity TARP Actions as per the RCA from Brisbane	2M	4	12 M					

GRO-10671-RA-LW104 Secondary Original Issue Date: Uversion: 1 Print: 8/04/2020 Page 110 of 111

PRINTED COPIES OF THIS DOCUMENT ARE UNCONTROLLED AND DEEMED VALID ONLY ON THE DAY OF PRINTING

102	Dewatering	LOM dewatering insufficient to manage water on the longwall face Water gathering at the low point in the (TG drive)	LOM Dewatering strategy and risk assessment Screamer pump available Cross block dewatering hole Seam profile is relatively level (MG to TG) from kick off to 26ct	2M	3	8M	Communicate the LOM dewatering strategy – N Gilbert Develop a strategy to dewater the longwall face – B Thompson Investigate sealed area water capacity – N Gilbert Review capability to install additional crossblock holes – N Gilbert	2M	2	5L	
103	Compressed air supply insufficient	Compressor failure	Compressed air system audit completed 4 x hire compressors installed	2M	3	8M	Review the LOM compressed air capacity requirements – N Gilbert	2M	3	8M	
104	Raw water supply insufficient Competing with MNM for water volume from Eungella Moranbah wash plant running out of water taking priority from Grosvenor Raw water quality being insufficient		Flow metres Raw water TARPs New filter plant is on order (available for use Q3 2020) Ability to preference water to the longwall Ability to trucking water in	2M	3	8M	Investigate using arrow waste water to prop up raw water consumption— A Heap Review who is required in the Water Steering Committee for managing water across the Moranbah-Grosvenor complex to mitigate the shortage of water — K Bachmann	2M	3	8M	

GRO-10671-RA-LW104 Secondary	Original Issue Date:	Version:	1	Print: 8/04/2020
Extraction	05/03/2020	Date of Issue:	05/03/2020	Page 111 of 111